C. Trails and Glades
time limit per test 4 seconds
memory limit per test 256 megabytes
input standard input
output standard output

Vasya went for a walk in the park. The park has n glades, numbered from 1 to n. There are m trails between the glades. The trails are numbered from 1 to m, where the i-th trail connects glades xi and yi. The numbers of the connected glades may be the same (xi = yi), which means that a trail connects a glade to itself. Also, two glades may have several non-intersecting trails between them.

Vasya is on glade 1, he wants to walk on all trails of the park exactly once, so that he can eventually return to glade 1. Unfortunately, Vasya does not know whether this walk is possible or not. Help Vasya, determine whether the walk is possible or not. If such walk is impossible, find the minimum number of trails the authorities need to add to the park in order to make the described walk possible.

Vasya can shift from one trail to another one only on glades. He can move on the trails in both directions. If Vasya started going on the trail that connects glades a and b, from glade a, then he must finish this trail on glade b.

Input

The first line contains two integers n and m (1 ≤ n ≤ 106; 0 ≤ m ≤ 106) — the number of glades in the park and the number of trails in the park, respectively. Next m lines specify the trails. The i-th line specifies the i-th trail as two space-separated numbers, xiyi(1 ≤ xi, yi ≤ n) — the numbers of the glades connected by this trail.

Output

Print the single integer — the answer to the problem. If Vasya's walk is possible without adding extra trails, print 0, otherwise print the minimum number of trails the authorities need to add to the park in order to make Vasya's walk possible.

Examples
input
3 3
1 2
2 3
3 1
output
0
input
2 5
1 1
1 2
1 2
2 2
1 2
output
1
Note

In the first test case the described walk is possible without building extra trails. For example, let's first go on the first trail, then on the second one, and finally on the third one.

In the second test case the described walk is impossible without adding extra trails. To make the walk possible, it is enough to add one trail, for example, between glades number one and two.

并查集判联通块。

如果只有一个联通块,答案为奇度数节点数/2,

如果有多个联通块,答案为奇度数节点数/2 + 没有奇度数点的联通块个数

由于1点必须在欧拉回路中,1点默认要设为存在。

 #include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#define LL long long
using namespace std;
const int mx[]={,,,-,};
const int my[]={,,,,-};
const int INF=1e9;
const int mxn=;
int read(){
int x=,f=;char ch=getchar();
while(ch<'' || ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>='' && ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
int n,m;
int fa[mxn];
int find(int x){
if(fa[x]==x)return x;
return fa[x]=find(fa[x]);
}
void init(int x){
for(int i=;i<=x;i++)fa[i]=i;
}
int deg[mxn];
int cnt[mxn],ans=;
bool flag[mxn];
bool vis[mxn];
int cct=;
int main(){
n=read();m=read();
int i,j,u,v;
init(n);
vis[]=;
for(i=;i<=m;i++){
u=read();v=read();
if(u!=v){
deg[u]++;
deg[v]++;
vis[u]=;vis[v]=;
u=find(u);v=find(v);
fa[u]=v;
}
else vis[u]=;
}
for(i=;i<=n;i++){
if(!vis[i])continue;
if(find(i) ==i)cct++;
}
for(i=;i<=n;i++){
if(!vis[i] || deg[i]%==)continue;
int x=find(i);
cnt[x]++;
}
int res=;
for(i=;i<=n;i++){
if(!vis[i])continue;
if(find(i)==i){
if(!cnt[i])ans++;
else res+=cnt[i];
}
}
if(cct==)printf("%d\n",res/);
else printf("%d\n",ans+res/);
return ;
}

CodeForces 209C Trails and Glades的更多相关文章

  1. Codeforces.209C.Trails and Glades(构造 欧拉回路)

    题目链接 \(Description\) 给定一张\(n\)个点\(m\)条边的无向图,允许有自环重边.求最少加多少条边后,其存在从\(1\)出发最后回到\(1\)的欧拉回路. 注意,欧拉回路是指要经 ...

  2. Codeforces 209 C. Trails and Glades

    Vasya went for a walk in the park. The park has n glades, numbered from 1 to n. There are m trails b ...

  3. CF209C Trails and Glades

    题目链接 题意 有一个\(n\)个点\(m\)条边的无向图(可能有重边和自环)(不一定联通).问最少添加多少条边,使得可以从\(1\)号点出发,沿着每条边走一遍之后回到\(1\)号点. 思路 其实就是 ...

  4. CF209C Trails and Glades(欧拉路)

    题意 最少添加多少条边,使无向图有欧拉回路. n,m≤106 题解 求出每个点的度数 奇度数点需要连一条新边 仅有偶度数点的连通块需要连两条新边 答案为上面统计的新边数 / 2 注意:此题默认以1为起 ...

  5. codeforces 459E

    codeforces 459E E. Pashmak and Graph time limit per test 1 second memory limit per test 256 megabyte ...

  6. python爬虫学习(5) —— 扒一下codeforces题面

    上一次我们拿学校的URP做了个小小的demo.... 其实我们还可以把每个学生的证件照爬下来做成一个证件照校花校草评比 另外也可以写一个物理实验自动选课... 但是出于多种原因,,还是绕开这些敏感话题 ...

  7. 【Codeforces 738D】Sea Battle(贪心)

    http://codeforces.com/contest/738/problem/D Galya is playing one-dimensional Sea Battle on a 1 × n g ...

  8. 【Codeforces 738C】Road to Cinema

    http://codeforces.com/contest/738/problem/C Vasya is currently at a car rental service, and he wants ...

  9. 【Codeforces 738A】Interview with Oleg

    http://codeforces.com/contest/738/problem/A Polycarp has interviewed Oleg and has written the interv ...

随机推荐

  1. nfs 三个参数权限

    遇到nfs客户端不可写的情况.  有延迟啊啊啊..  等1min左右就可以写了. 挂载参数: cat /var/lib/nfs/etab -->server cat /proc/mounts   ...

  2. codevs http://www.codevs.cn/problem/?problemset_id=1 循环、递归、stl复习题

    12.10高一练习题 1.要求: 这周回顾复习的内容是循环.递归.stl. 不要因为题目简单就放弃不做,现在就是练习基础. 2.练习题: (1)循环   题目解析与代码见随笔分类  NOI题库 htt ...

  3. react native中的欢迎页(解决首加载白屏)

    参照网页: http://blog.csdn.net/fengyuzhengfan/article/details/52712829 首先是在原生中写一些方法,然后通过react native中js去 ...

  4. redis 学习笔记(3)-master/slave(主/从模式)

    类似mysql的master-slave模式一样,redis的master-slave可以提升系统的可用性,master节点写入cache后,会自动同步到slave上. 环境: master node ...

  5. QTableView 添加按钮

    这里说一下怎么在QTableView添加一个按钮 添加两个按钮的例子在这篇文章里:QTableView 一列添加两个按钮 效果是点击button弹出一个对话框. 看一下ButtonDelegate的代 ...

  6. css3实践之图片轮播(Transform,Transition和Animation)

    楼主喜欢追求视觉上的享受,虽常以牺牲性能无法兼容为代价却也乐此不疲.本文就通过一个个的demo演示来简单了解下css3下的Transform,Transition和Animation. 本文需要实现效 ...

  7. ASP.NET Web API(三):安全验证之使用摘要认证(digest authentication)

    在前一篇文章中,主要讨论了使用HTTP基本认证的方法,因为HTTP基本认证的方式决定了它在安全性方面存在很大的问题,所以接下来看看另一种验证的方式:digest authentication,即摘要认 ...

  8. 无法将分支 master 发布到远程 origin,因为远程存储库中已存在具有同一名称的分支

    无法将分支 master 发布到远程 origin,因为远程存储库中已存在具有同一名称的分支.发布此分支将导致远程存储库中的分支发生非快进更新. 第一次用oschina的git设置完远程仓库后提交出现 ...

  9. LCA倍增算法的错误与模板

    先上我原来的错误的代码 type node=^link; link=record num:int64; next:node; end; var fa:..,..] of int64; dep:..] ...

  10. 重叠(Overlapping) NAT

    当内部网络也使用公网注册地址(或者是外网合法地址)时,如果仍使用标准的静态或者动态NAT转换,则可能使得转换的内网地址与外网中合法地址冲突,使数据包又返回到了本地网络,这肯定是不行的.这时我们就要使用 ...