[COJ6023]合并果子·改

试题描述

在一个果园里,多多已经将所有的果子打了下来,而且按果子的不同种类分成了不同的堆。多多把这些果子堆排成一排,然后所有的果子合成一堆。
    每一次合并,多多可以把相邻两堆果子合并到一起,消耗的体力等于两堆果子的重量之和。可以看出,所有的果子经过n-1次合并之后,就只剩下一堆了。多多在合并果子时总共消耗的体力等于每次合并所耗体力之和。
    因为还要花大力气把这些果子搬回家,所以多多在合并果子时要尽可能地节省体力。假定每个果子重量都为1,并且已知果子的种类数和每种果子的数目,你的任务是设计出合并的次序方案,使多多耗费的体力最少,并输出这个最小的体力耗费值。
    例如有3种果子,数目依次为1,2,9。可以先将1、2堆合并,新堆数目为3,耗费体力为3。接着,将新堆与原先的第三堆合并,又得到新的堆,数目为12,耗费体力为12。所以多多总共耗费体力=3+12=15。可以证明15为最小的体力耗费值。

输入

包括两行,第一行是一个整数n,表示果子的种类数。第二行包含n个整数,用空格分隔,第i个整数ai(1<=ai<=20000)是第i种果子的数目。

输出

包括一行,这一行只包含一个整数,也就是最小的体力耗费值。输入数据保证这个值小于2^63。

输入示例

   

输出示例


数据规模及约定

1<=n<=100

题解

设 f[i][j] 表示 [i, j] 这段区间合并成一堆的最小体力耗费值,那么转移不难想,即 f[i][j] = min{ f[i][k] + f[k+1][j] + S(i,j) | i ≤ k ≤ j }。

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cmath>
#include <stack>
#include <vector>
#include <queue>
#include <cstring>
#include <string>
#include <map>
#include <set>
using namespace std; const int BufferSize = 1 << 16;
char buffer[BufferSize], *Head, *Tail;
inline char Getchar() {
if(Head == Tail) {
int l = fread(buffer, 1, BufferSize, stdin);
Tail = (Head = buffer) + l;
}
return *Head++;
}
int read() {
int x = 0, f = 1; char c = getchar();
while(!isdigit(c)){ if(c == '-') f = -1; c = getchar(); }
while(isdigit(c)){ x = x * 10 + c - '0'; c = getchar(); }
return x * f;
} #define maxn 110
#define oo (1ll << 63) - 1
#define LL long long
int n;
LL S[maxn], f[maxn][maxn]; int main() {
n = read();
for(int i = 1; i <= n; i++) S[i] = S[i-1] + read(); for(int len = 2; len <= n; len++)
for(int l = 1; l + len - 1 <= n; l++) {
int r = l + len - 1;
f[l][r] = oo;
for(int k = l; k < r; k++) f[l][r] = min(f[l][r], f[l][k] + f[k+1][r]);
f[l][r] += S[r] - S[l-1];
} printf("%lld\n", f[1][n]); return 0;
}

注意到那个 "#define oo (1 << 63) - 1" 的地方 (1 << 63) 已经溢出了,没关系,我们减 1 再把它溢出回来。

[KOJ6023]合并果子·改的更多相关文章

  1. [KOJ6024]合并果子·改(强化版)

    [COJ6024]合并果子·改(强化版) 试题描述 在一个果园里,多多已经将所有的果子打了下来,而且按果子的不同种类分成了不同的堆.多多把这些果子堆排成一排,然后所有的果子合成一堆.    每一次合并 ...

  2. AC日记——手写堆ac合并果子(傻子)

    今天整理最近的考试题 发现一个东西叫做优先队列 priority_queue(说白了就是大根堆) 但是 我对堆的了解还是很少的 所以 我决定手写一个堆 于是我写了一个简单的堆 手写的堆说白了就是个二叉 ...

  3. AHOI1997彩旗飘飘 VIJOS1097合并果子(noip2007)

    AHOI彩旗飘飘 这是一题类似于排列组合的题目吧...递推状态 数组f[100][100][100][2];表示红旗数目,黄旗数目,颜色改变的次数,末尾的旗的颜色(0为黄,1为红) 之后就是如何写递推 ...

  4. NOIP 2004 合并果子

    洛谷P1090 https://www.luogu.org/problemnew/show/P1090 JDOJ 1270 题目描述 在一个果园里,多多已经将所有的果子打了下来,而且按果子的不同种类分 ...

  5. 代码源 每日一题 分割 洛谷 P6033合并果子

    ​ 题目链接:切割 - 题目 - Daimayuan Online Judge 数据加强版链接: [NOIP2004 提高组] 合并果子 加强版 - 洛谷 题目描述 有一个长度为 ∑ai 的木板,需要 ...

  6. 【noip 2004】 合并果子

    noip2016结束后的第一份代码--优先队列的练习 合并果子 原题在这里 #include <iostream> #include <queue> #include < ...

  7. 合并果子 2004年NOIP全国联赛普及组

    时间限制: 1 s 空间限制: 128000 KB 题目等级 : 钻石 Diamond 题目描述 Description 在一个果园里,多多已经将所有的果子打了下来,而且按果子的不同种类分成了不同的堆 ...

  8. NOIP2004合并果子

    题目描述 在一个果园里,多多已经将所有的果子打了下来,而且按果子的不同种类分成了不同的堆.多多决定把所有的果子合成一堆. 每一次合并,多多可以把两堆果子合并到一起,消耗的体力等于两堆果子的重量之和.可 ...

  9. codevs 1063 合并果子//优先队列

    1063 合并果子 2004年NOIP全国联赛普及组  时间限制: 1 s 空间限制: 128000 KB 题目等级 : 钻石    题目描述 Description 在一个果园里,多多已经将所有的果 ...

随机推荐

  1. 使用Navicat导入导出表的数据做测试(转载)

    当我们对MySQL数据库进行了误操作,造成某个数据表中的部分数据丢失时,肯定就要利用备份的数据库,对丢失部分的数据进行导出.导入操作了.Navicat工具正好给我们提供了一个数据表的导入导出功能. 1 ...

  2. UrlEncode编码/UrlDecode解码 - 站长工具

    http://tool.chinaz.com/tools/urlencode.aspx

  3. AspectJ基础学习之一简介(转载)

    AspectJ基础学习之一简介(转载) 一.为什么写这个系列的博客   Aspectj一个易用的.功能强大的aop编程语言.其官网地址是:http://www.eclipse.org/aspectj/ ...

  4. CSS 图片加载完成再淡入显示

    一.方法 加载完成再显示:借助Image对象的onload事件,加载完时再把src赋给img标签的src: 淡人显示:起始opacity为0,利用transform过度到1 二.代码 <!DOC ...

  5. python 内建函数setattr() getattr()

    python 内建函数setattr() getattr() setattr(object,name,value): 作用:设置object的名称为name(type:string)的属性的属性值为v ...

  6. windows命令关机

    不知道为啥,远程连接的window服务器没有关机命令,感觉是不是管理员权限导致的,所以找了下用命令关机,如下 shutdown -s -t #5秒内关机 shutdown -r -t #5秒内重启

  7. Repodata is over 2 weeks old. Install yum-cron? Or run: yum makecache fast

    Repodata is over 2 weeks old. Install yum-cron? Or run: yum makecache fast的解决方法: 在命令行输入:yum clean al ...

  8. ecshop新增一个编辑器

    在ecshop的后台新增一个编辑器框 步骤一:找到lib_main.php 文件:admin/includes/lib_main.php. 找到变量:function create_html_edit ...

  9. 关于MarshalByRefObject的解释

    http://www.cnblogs.com/webfpc/archive/2010/03/10/1667101.html 首先了解一下不同应用程序域中的对象的通信方式有两种: 一种是跨应用程序域边界 ...

  10. OC-成员变量的作用域

    #import <Foundation/Foundation.h> @interface Person : NSObject { int _no; @public // 在任何地方都能直接 ...