题目链接http://acm.hdu.edu.cn/showproblem.php?pid=1576

题目大意:求(A/B)mod 9973。但是给出的A是mod形式n,n=A%9973。

解题思路

两种思路,一种从乘法逆元角度,另一种从扩展GCD推公式角度。

①乘法逆元:

先来看下逆元和乘法逆元的关系,对于A*X=B,有X=A-1*B,A-1就是普通的逆元了,在这里就是倒数。

如果A*X=B mod n,变成同余式了,那么A-1依然是存在的,只不过不是倒数了,一般把同余之后的逆元称为乘法逆元。( - -。好像这个定义是错的)。

题目如果是(A/B) mod 9973, 那就麻烦了,因为乘除法不支持mod同余运算,需要转化为逆元计算,乘法变除法,除法变乘法。且题目说gcd(B,9973)=1,所以取B的乘法逆元b=mod_reverse(B,9973)。

那么题目就转化成(A*b)mod 9973,再化简一下,(A%9973*b)%9973, 因为A%9973=n,

所以最后结果就是(n*b)mod 9973

#include "cstdio"
#define LL long long
LL ex_gcd(LL a,LL b,LL &x,LL &y)
{
if(a==&&b==) return -;
if(b==) {x=;y=;return a;}
LL d=ex_gcd(b,a%b,y,x);
y-=a/b*x;
return d;
}
LL mod_reverse(LL a,LL n)
{
LL x,y,d=ex_gcd(a,n,x,y);
if(d==) return (x%n+n)%n;
else return -;
}
int main()
{
LL T,n,B;
scanf("%I64d",&T);
while(T--)
{
scanf("%I64d%I64d",&n,&B);
LL x=mod_reverse(B,);
printf("%I64d\n",(n*x)%);
}
}

②扩展GCD角度:

设A=9973*y+n,因为A%B=0,所以(9973*y+n)=B*x,其中x=A/B

移项,有B*x+9973*(-y)=n。

联想到扩展GCD的式子:B*X+9973*Y=1,两边都乘以n,B*(nX)+9973*(nY)=n。

这样x=nX,y=-nY,只要求出X和Y就行了,套扩展GCD模板即可。

注意这里扩展GCD求出的一组x和y可能都是负值,如果x%9973是错的,对负数取模的方法是(x%mod+mod)%mod.

#include "cstdio"
#define LL long long
LL ex_gcd(LL a,LL b,LL &x,LL &y)
{
if(a==&&b==) return -;
if(b==) {x=;y=;return a;}
LL d=ex_gcd(b,a%b,y,x);
y-=a/b*x;
return d;
}
int main()
{
LL T,n,B;
scanf("%I64d",&T);
while(T--)
{
scanf("%I64d%I64d",&n,&B);
LL x,y;
ex_gcd(B,,x,y);
x*=n;
printf("%I64d\n",(x%+)%);
}
}
12168956 2014-11-13 00:56:37 Accepted 1576 0MS 228K 519B C++ Physcal

 

HDU 1576 (乘法逆元)的更多相关文章

  1. hdu 1576 求逆元

    题意:给出n=A mod 9973和B,求(A/B) mod 9973 昨天用扩展欧几里得做过这题,其实用逆元也可以做. 逆元的定义:例如a*b≡1 (mod m),则b就是a关于m的逆元. 求逆元方 ...

  2. 题解报告:hdu 1576 A/B(exgcd、乘法逆元+整数快速幂)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1576 Problem Description 要求(A/B)%9973,但由于A很大,我们只给出n(n ...

  3. HDU 5651 计算回文串个数问题(有重复的全排列、乘法逆元、费马小定理)

    原题: http://acm.hdu.edu.cn/showproblem.php?pid=5651 很容易看出来的是,如果一个字符串中,多于一个字母出现奇数次,则该字符串无法形成回文串,因为不能删减 ...

  4. HDU 1452 (约数和+乘法逆元)

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1452 题目大意:求2004^X所有约数和,结果mod 29. 解题思路: ①整数唯一分解定理: 一个 ...

  5. hdu 2669 Romantic (乘法逆元)

    Romantic Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Su ...

  6. HDU 5407(2015多校10)-CRB and Candies(组合数最小公倍数+乘法逆元)

    题目地址:pid=5407">HDU 5407 题意:CRB有n颗不同的糖果,如今他要吃掉k颗(0<=k<=n),问k取0~n的方案数的最小公倍数是多少. 思路:首先做这道 ...

  7. Hdu 1452 Happy 2004(除数和函数,快速幂乘(模),乘法逆元)

    Problem Description Considera positive integer X,and let S be the sum of all positive integer diviso ...

  8. HDU 4828 Grids(卡特兰数+乘法逆元)

    首先我按着我的理解说一下它为什么是卡特兰数,首先卡特兰数有一个很典型的应用就是求1~N个自然数出栈情况的种类数.而这里正好就对应了这种情况.我们要满足题目中给的条件,数字应该是从小到大放置的,1肯定在 ...

  9. HDU 3923 Invoker(polya定理+乘法逆元(扩展欧几里德+费马小定理))

    Invoker Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 122768/62768K (Java/Other) Total Subm ...

随机推荐

  1. .net学习之Attribute特性和EF关键知识点

    一.Attribute特性/标签1.Attribute用来对类.属性.方法等标注额外的信息,贴一个标签简单的说,定制特性Attribute,本质上就是一个类,它为目标元素提供关联附加信息,并在运行时以 ...

  2. 在Eclipse中自定义类似syso的快捷代码模板

    sysout/syso syserr/ syse 点击菜单栏的“Window”->“Preferences”,打开“Preferences”对话框.在Preferences”对话框中点击“Jav ...

  3. Solr入门之(1)前言与概述

    一.前言:为何选择Solr 由于搜索引擎功能在门户社区中对提高用户体验有着重在门户社区中涉及大量需要搜索引擎的功能需求,目前在实现搜索引擎的方案上有几种方案可供选择: 1. 基于Lucene自己进行封 ...

  4. 如何通过阅读C标准来解决C语言语法问题

    有时候必须非常专注地阅读ANSI C标准才能找到某个问题的答案.一位销售工程师把下面这段代码作为测试用例发给Sun的编译小组. foo(const char **p) {} int main(int ...

  5. mybatis 中#和$的区别

    #{…}是一个参数标记,将传入的数据都当成一个字符串,会对自动传入的数据加一个双引号.如:order by #user_id#,如果传入的值是1,那么解析成sql时的值为order by " ...

  6. 各种编码问题产生原因以及解决办法---------响应编码,请求编码,URL编码

     响应编码 产生原因以及解决办法: 示例: package cn.yzu; import java.io.IOException; import javax.servlet.ServletExcept ...

  7. SoapUI之webservice接口测试(一)

    1.新建soap project 添加后出现接口内容 2.为了方便后续的测试,以防某些参数删除错了,这边需要新建测试集 3.点开新建的测试集可以发现,里面的内容跟原始测试集内容是一样的 然后就可以在这 ...

  8. HDU 4513 吉哥系列故事——完美队形II (Manacher变形)

    题意:假设有n个人按顺序的身高分别是h[1], h[2] ... h[n],从中挑出一些人形成一个新的队形,新的队形若满足以下要求,则就是新的完美队形:  1.连续的 2.形成回文串 3.从左到中间那 ...

  9. 重写ViewPager方法,防止滑动广告尾页的时候,Fragment也改变! (如果广告设置为轮播的话,不需要重写ViewPager)

    public class MyViewPager extends ViewPager{ public MyViewPager(Context context) { this(context, null ...

  10. EM css

        原文地址http://www.uml.org.cn/html/201207311.asp             CSS中强大的EM    作者:dearjohn ,发布于2012-7-31, ...