python数据结构与算法——图的最短路径(Bellman-Ford算法)解决负权边
# Bellman-Ford核心算法
# 对于一个包含n个顶点,m条边的图, 计算源点到任意点的最短距离
# 循环n-1轮,每轮对m条边进行一次松弛操作 # 定理:
# 在一个含有n个顶点的图中,任意两点之间的最短路径最多包含n-1条边
# 最短路径肯定是一个不包含回路的简单路径(回路包括正权回路与负权回路)
# 1. 如果最短路径中包含正权回路,则去掉这个回路,一定可以得到更短的路径
# 2. 如果最短路径中包含负权回路,则每多走一次这个回路,路径更短,则不存在最短路径
# 因此最短路径肯定是一个不包含回路的简单路径,即最多包含n-1条边,所以进行n-1次松弛即可 G = {1:{1:0, 2:-3, 5:5},
2:{2:0, 3:2},
3:{3:0, 4:3},
4:{4:0, 5:2},
5:{5:0}} def getEdges(G):
""" 输入图G,返回其边与端点的列表 """
v1 = [] # 出发点
v2 = [] # 对应的相邻到达点
w = [] # 顶点v1到顶点v2的边的权值
for i in G:
for j in G[i]:
if G[i][j] != 0:
w.append(G[i][j])
v1.append(i)
v2.append(j)
return v1,v2,w class CycleError(Exception):
pass def Bellman_Ford(G, v0, INF=999):
v1,v2,w = getEdges(G) # 初始化源点与所有点之间的最短距离
dis = dict((k,INF) for k in G.keys())
dis[v0] = 0 # 核心算法
for k in range(len(G)-1): # 循环 n-1轮
check = 0 # 用于标记本轮松弛中dis是否发生更新
for i in range(len(w)): # 对每条边进行一次松弛操作
if dis[v1[i]] + w[i] < dis[v2[i]]:
dis[v2[i]] = dis[v1[i]] + w[i]
check = 1
if check == 0: break # 检测负权回路
# 如果在 n-1 次松弛之后,最短路径依然发生变化,则该图必然存在负权回路
flag = 0
for i in range(len(w)): # 对每条边再尝试进行一次松弛操作
if dis[v1[i]] + w[i] < dis[v2[i]]:
flag = 1
break
if flag == 1:
# raise CycleError()
return False
return dis v0 = 1
dis = Bellman_Ford(G, v0)
print dis.values()
python数据结构与算法——图的最短路径(Bellman-Ford算法)解决负权边的更多相关文章
- python数据结构与算法——图的最短路径(Dijkstra算法)
# Dijkstra算法——通过边实现松弛 # 指定一个点到其他各顶点的路径——单源最短路径 # 初始化图参数 G = {1:{1:0, 2:1, 3:12}, 2:{2:0, 3:9, 4:3}, ...
- python数据结构与算法——图的最短路径(Floyd-Warshall算法)
使用Floyd-Warshall算法 求图两点之间的最短路径 不允许有负权边,时间复杂度高,思路简单 # 城市地图(字典的字典) # 字典的第1个键为起点城市,第2个键为目标城市其键值为两个城市间的直 ...
- Bellman—Ford算法思想
---恢复内容开始--- Bellman—Ford算法能在更普遍的情况下(存在负权边)解决单源点最短路径问题.对于给定的带权(有向或无向)图G=(V,E),其源点为s,加权函数w是边集E的映射.对图G ...
- Bellman - Ford 算法解决最短路径问题
Bellman - Ford 算法: 一:基本算法 对于单源最短路径问题,上一篇文章中介绍了 Dijkstra 算法,但是由于 Dijkstra 算法局限于解决非负权的最短路径问题,对于带负权的图就力 ...
- 数据结构与算法-图的最短路径Dijkstra
一 无向图单源最短路径,Dijkstra算法 计算源点a到图中其他节点的最短距离,是一种贪心算法.利用局部最优,求解全局最优解. 设立一个visited访问和dist距离数组,在初始化后每一次收集一 ...
- 图的最短路径---弗洛伊德(Floyd)算法浅析
算法介绍 和Dijkstra算法一样,Floyd算法也是为了解决寻找给定的加权图中顶点间最短路径的算法.不同的是,Floyd可以用来解决"多源最短路径"的问题. 算法思路 算法需要 ...
- ACM/ICPC 之 最短路径-Bellman Ford范例(POJ1556-POJ2240)
两道Bellman Ford解最短路的范例,Bellman Ford只是一种最短路的方法,两道都可以用dijkstra, SPFA做. Bellman Ford解法是将每条边遍历一次,遍历一次所有边可 ...
- [ACM] POJ 3259 Wormholes (bellman-ford最短路径,推断是否存在负权回路)
Wormholes Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 29971 Accepted: 10844 Descr ...
- 最短路径之Bellman-Ford——解决负权边
Bellman-Ford算法非常简单,核心代码四行,可以完美的解决带有负权边的图. for(k=1;k<=n-1;k++) //外循环循环n-1次,n为顶点个数 for(i=1;i<=m; ...
随机推荐
- servlet学习笔记_1
一.动态页面和静态页面 动态页面&静态页面:如果浏览器在不同时刻不同条件下访问web服务器的某个页面,浏览器所获得的页面内容会发生变化,那么这种页面称之为动态页面.动态页面和静态页面的区别在于 ...
- update
update `表名` set 字段名 =replace(字段名, '查找的内容','更改的内容') where 字段名 like '%查找的内容%'; update shangpin set cli ...
- Redis设计思路学习与总结
版权声明:本文由宋增宽原创文章,转载请注明出处: 文章原文链接:https://www.qcloud.com/community/article/222 来源:腾云阁 https://www.qclo ...
- 详解应对平台高并发的分布式调度框架TBSchedule
转载: 详解应对平台高并发的分布式调度框架TBSchedule
- 通过 Informix 系统表监控和优化数据库
Informix 数据库系统字典表简介 Informix 数据库服务器运行时的状态信息是数据库管理员 DBA 进行系统监控和优化的必需信息来源.Informix 的状态信息在内部以 2 种方式存在,如 ...
- linux split (分割文件)命令
linux split 命令 功能说明:切割文件. 语 法:split [--help][--version][-<行数>][-b <字节>][-C <字节>][- ...
- JavaScipt 源码解析 数据缓存
常见的内存泄露的几种情况: 循环引用 JavaScript闭包 DOM插入 一个DOM对象被一个JavaScript对象引用,同时又引用同一个或其他的JavaScript对象,这个DOM对象可能回引发 ...
- osg,vtk,ogre的区别
osg使用过一年,阅读过一部分源代码,vtk也断续使用过三四年了,ogre研究的比较深入,基本上比较熟悉它的整体结构,说说个人的看法 vtk是一个算法库,里面包括了很多挺不错的算法,如果做有限元云图, ...
- 电源相关知识—S0、S1(POS)、S2、S3(STR)、 S4、S5、睡眠、休眠、待机
转 http://blog.sina.com.cn/s/blog_52f28dde0100l3ci.html APM https://en.wikipedia.org/wiki/Advanced_Po ...
- ios7中的多任务
转自:http://onevcat.com/2013/08/ios7-background-multitask/ WWDC 2013 Session笔记 - iOS7中的多任务 iOS7的后台多任务特 ...