树-二叉平衡树AVL
基本概念
AVL树:树中任何节点的两个子树的高度最大差别为1。
AVL树的查找、插入和删除在平均和最坏情况下都是O(logn)。
AVL实现
AVL树的节点包括的几个组成对象:
(01) key -- 是关键字,是用来对AVL树的节点进行排序的。
(02) left -- 是左孩子。
(03) right -- 是右孩子。
(04) height -- 是高度。即空的二叉树的高度是0,非空树的高度等于它的最大层次(根的层次为1,根的子节点为第2层,依次类推)。
AVL旋转算法
AVL失衡四种形态:
LL(根的左子树的左子树高):根节点的左子树的左子树还有非空子节点,导致"根的左子树的高度"比"根的右子树的高度"大2。
LR(根的左子树的右子树高):根节点的左子树的右子树还有非空子节点,导致"根的左子树的高度"比"根的右子树的高度"大2。
RL(根的右子树的左子树高):根节点的右子树的左子树还有非空子节点,导致"根的右子树的高度"比"根的左子树的高度"大2。
RR(根的右子树的右子树高):根节点的右子树的右子树还有非空子节点,导致"根的右子树的高度"比"根的左子树的高度"大2。
旋转算法实现
1 LL(一步到位)
LL失去平衡的情况,可以通过一次旋转让AVL树恢复平衡。如下图:
图中左边是旋转之前的树,右边是旋转之后的树。从中可以发现,旋转之后的树又变成了AVL树,而且该旋转只需要一次即可完成。
对于LL旋转,你可以这样理解为:LL旋转是围绕"失去平衡的AVL根节点"进行的,也就是节点k2;而且由于是LL情况,即左左情况,就用手抓着"左孩子,即k1"使劲摇。将k1变成根节点,k2变成k1的右子树,"k1的右子树"变成"k2的左子树"。
/*
* LL:左左对应的情况(左单旋转)。
*
* 返回值:旋转后的根节点
*/
static Node* left_left_rotation(AVLTree k2)
{
AVLTree k1;
k1 = k2->left;
k2->left = k1->right;
k1->right = k2;
k2->height = MAX( HEIGHT(k2->left), HEIGHT(k2->right)) + 1;
k1->height = MAX( HEIGHT(k1->left), k2->height) + 1;
return k1;
}
2 RR(一步到位)
理解了LL之后,RR就相当容易理解了。RR是与LL对称的情况!RR恢复平衡的旋转方法如下:

图中左边是旋转之前的树,右边是旋转之后的树。RR旋转也只需要一次即可完成。
/*
* RR:右右对应的情况(右单旋转)。
*
* 返回值:旋转后的根节点
*/
static Node* right_right_rotation(AVLTree k1)
{
AVLTree k2;k2 = k1->right;
k1->right = k2->left;
k2->left = k1;k1->height = MAX( HEIGHT(k1->left), HEIGHT(k1->right)) + 1;
k2->height = MAX( HEIGHT(k2->right), k1->height) + 1;return k2;
}
3 LR(两步旋转RR->LL)
LR失去平衡的情况,需要经过两次旋转才能让AVL树恢复平衡。如下图:
第一次旋转是围绕"k1"进行的"RR旋转",第二次是围绕"k3"进行的"LL旋转"。
/*
* LR:左右对应的情况(左双旋转)。
*
* 返回值:旋转后的根节点
*/
static Node* left_right_rotation(AVLTree k3)
{
k3->left = right_right_rotation(k3->left);return left_left_rotation(k3);
}
4 RL(两步旋转LL->RR)
RL是与LR的对称情况!RL恢复平衡的旋转方法如下:

第一次旋转是围绕"k3"进行的"LL旋转",第二次是围绕"k1"进行的"RR旋转"。
/*
* RL:右左对应的情况(右双旋转)。
*
* 返回值:旋转后的根节点
*/
static Node* right_left_rotation(AVLTree k1)
{
k1->right = left_left_rotation(k1->right);return right_right_rotation(k1);
}
AVL操作
插入
步骤1:递归插入到左子树或右子树(left<root<right);
步骤2:比较左右子树高度来确定AVL失衡处理类型:
插入到左子树,就有LL和LR:通过left<root<right确定;
插入到右子树,就有RL和RR:通过left<root<right确定;
步骤3:修正树高。
删除
树-二叉平衡树AVL的更多相关文章
- Algorithms: 二叉平衡树(AVL)
二叉平衡树(AVL): 这个数据结构我在三月份学数据结构结构的时候遇到过.但当时没调通.也就没写下来.前几天要用的时候给调好了!详细AVL是什么,我就不介绍了,维基百科都有. 后面两月又要忙了. ...
- 树-二叉搜索树-AVL树
树-二叉搜索树-AVL树 树 树的基本概念 节点的度:节点的儿子数 树的度:Max{节点的度} 节点的高度:节点到各叶节点的最大路径长度 树的高度:根节点的高度 节点的深度(层数):根节点到该节点的路 ...
- AVL树(二叉平衡树)详解与实现
AVL树概念 前面学习二叉查找树和二叉树的各种遍历,但是其查找效率不稳定(斜树),而二叉平衡树的用途更多.查找相比稳定很多.(欢迎关注数据结构专栏) AVL树是带有平衡条件的二叉查找树.这个平衡条件必 ...
- 二叉平衡树AVL的插入与删除(java实现)
二叉平衡树 全图基础解释参考链接:http://btechsmartclass.com/data_structures/avl-trees.html 二叉平衡树:https://www.cnblogs ...
- (4) 二叉平衡树, AVL树
1.为什么要有平衡二叉树? 上一节我们讲了一般的二叉查找树, 其期望深度为O(log2n), 其各操作的时间复杂度O(log2n)同时也是由此决定的.但是在某些情况下(如在插入的序列是有序的时候), ...
- java项目---用java实现二叉平衡树(AVL树)并打印结果(详)(3星)
package Demo; public class AVLtree { private Node root; //首先定义根节点 private static class Node{ //定义Nod ...
- 从零开始学算法---二叉平衡树(AVL树)
先来了解一些基本概念: 1)什么是二叉平衡树? 之前我们了解过二叉查找树,我们说通常来讲, 对于一棵有n个节点的二叉查找树,查询一个节点的时间复杂度为log以2为底的N的对数. 通常来讲是这样的, 但 ...
- 各种查找算法的选用分析(顺序查找、二分查找、二叉平衡树、B树、红黑树、B+树)
目录 顺序查找 二分查找 二叉平衡树 B树 红黑树 B+树 参考文档 顺序查找 给你一组数,最自然的效率最低的查找算法是顺序查找--从头到尾挨个挨个遍历查找,它的时间复杂度为O(n). 二分查找 而另 ...
- 看动画学算法之:平衡二叉搜索树AVL Tree
目录 简介 AVL的特性 AVL的构建 AVL的搜索 AVL的插入 AVL的删除 简介 平衡二叉搜索树是一种特殊的二叉搜索树.为什么会有平衡二叉搜索树呢? 考虑一下二叉搜索树的特殊情况,如果一个二叉搜 ...
随机推荐
- NSFileHandle 和 NSFileManager的一些用法
文件操作 NSFileManager 常见的NSFileManager文件的方法: -(BOOL)contentsAtPath:path 从文件中读取数据 -(BOOL)createFileAtPat ...
- 解决服务器断电导致mysql数据库无法启动
1.找到mysql数据库目录下的*.ini这个配置文件2.复制配置文件到桌面,当作备份3.打开配置文件,在配置文件里加上innodb_force_recovery=6这句,保存,然后重启服务器4重启完 ...
- 解决win8 64位提示MSVCP71.DLL等组件缺失
把压缩包里面的DLL解压,只需要把其实缺失DLL复制到C:\Windows\SysWOW64即可.压缩包包含MSVCP70.DLL.MSVCP71.DLL.MSVCR70.DLL.MSVCR71.DL ...
- 解决WIN8 磁盘100 活动占用100% win8硬盘一直响
一.先看最终效果: 二.再说解决办法: 1.任务管理器关闭进程 taskhost.exe和类似于taskhostxx.exe开头的进程. 2.在电源管理里面设置2分钟不使用硬盘则关闭硬盘,看我的截 ...
- poj 1487 Single-Player Games
主要考察表达式的解析和高斯消元!!! #include<iostream> #include<stdio.h> #include<algorithm> #inclu ...
- linux查看历史命令history
在linux下,我们有可能需要查看最近执行过的命令(历史命令),我们可以进行如下操作: # 显示使用过的所有历史命令 $ history # 显示最近使用的5个命令 $ history 5 我们可以通 ...
- [itint5]棋盘漫步
要注意dp[0][0]要初始化为1. int totalPath(vector<vector<bool> > &blocked) { int m = blocked.s ...
- 120. Triangle
题目: Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjace ...
- matlab 设置横纵坐标刻度的字体!!
set(gca,'FontSize',16) %%设置横纵坐标字体的大小
- OAF与Windows 7版本不兼容黑屏卡顿问题
OAF版本比较原始,在Window7中无法应用配色方案,导致黑屏卡顿问题.(在启动OC4J后,Window7的配色方案还是会还原至原始状态) 修改$JDEV_HOME/jdev/bin/jdev.co ...
