poj3692
首先这道题很容易想到二分图相关(给的很明确了);
但是我们发现,男孩之间都互相认识,女孩之间也互相认识
这样是不能划分点集的
但是男孩之间都互相认识,女孩之间也互相认识,所以男孩和男孩,女孩和女孩之间不存在不认识关系;
如果以不认识作为边的话,这样不就能划开点集吗?
于是我们换一个思维,要找最多的男女生互相认识,不就是找最多的男女生之间不存在不认识关系吗
所以,我们在不认识之间的男女之间连边,然后对这个二分图求最大独立集即可
最大独立集=点集x+点集y-最大匹配数(最小点覆盖)
要注意思维的转化
type node=record
point,next:longint;
end;
var edge:array[..] of node;
p,cx,cy:array[..] of longint;
v:array[..] of boolean;
a:array[..,..] of boolean;
t,len,ans,g,b,m,i,j,x,y:longint; procedure add(x,y:longint);
begin
inc(len);
edge[len].point:=y;
edge[len].next:=p[x];
p[x]:=len;
end; function find(x:longint):longint;
var y,i:longint;
begin
i:=p[x];
while i<>- do
begin
y:=edge[i].point;
if not v[y] then
begin
v[y]:=true;
if (cy[y]=-) or (find(cy[y])=) then
begin
cx[x]:=y;
cy[y]:=x;
exit();
end;
end;
i:=edge[i].next;
end;
exit();
end; begin
readln(g,b,m);
while (b<>) do
begin
inc(t);
fillchar(a,sizeof(a),false);
len:=;
fillchar(p,sizeof(p),);
for i:= to m do
begin
readln(x,y);
a[x,y]:=true;
end;
for i:= to g do
for j:= to b do
if not a[i,j] then add(i,j);
fillchar(cx,sizeof(cx),);
fillchar(cy,sizeof(cy),);
ans:=;
for i:= to g do
if cx[i]=- then
begin
fillchar(v,sizeof(v),false);
ans:=ans+find(i);
end;
writeln('Case ',t,': ',b+g-ans);
readln(g,b,m);
end;
end.
poj3692的更多相关文章
- poj3692 最大点权独立集/最大独立集
题意:有男孩和女孩,男孩之间全部认识,女孩之间全部认识,一部分男孩和女孩认识,现在希望选出一些孩子,这些孩子都相互认识. 方法:正的做不好做,观察他的补图,补图之间无关系的边就是原图有关系的.补图中的 ...
- POJ3692 Kindergarten 【最大独立集】
Kindergarten Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 5317 Accepted: 2589 Desc ...
- POJ3692 Kindergarten
Kindergarten Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 6882 Accepted: 3402 Desc ...
- POJ3692【二分匹配】
题意: 有男生女生,男生都认识双方,女生都认识双方,给出一些男女关系,问最大拿多少个人,使得所有人都认识双方. 思路: 原图最大团=总结点数-[[补图(补图为二分图)]的最大独立集=最大完全子图的顶点 ...
- POJ3692 Kindergarten —— 二分图最大团
题目链接:http://poj.org/problem?id=3692 Kindergarten Time Limit: 2000MS Memory Limit: 65536K Total Sub ...
- POJ3692 最大点权独立集元素个数
题意: n个男孩和m个女孩,给你他们谁和谁彼此了解,问你要找到一个集合,使得这个集合中的男孩和女孩相互了解,并且人数最多. 思路: 简单题目,其实就是在求最大点权独立集元素个数,先 ...
- 二分图的最大独立集 最大匹配解题 Hopcroft-Karp算法
二分图模型中的最大独立集问题:在二分图G=(X,Y;E)中求取最小的顶点集V* ⊂ {X,Y},使得边 V*任意两点之间没有边相连. 公式: 最大独立集顶点个数 = 总的顶点数(|X|+|Y|)- 最 ...
随机推荐
- 51nod1264线段相交
1264 线段相交 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 给出平面上两条线段的两个端点,判断这两条线段是否相交(有一个公共点或有部分重合认为相交). 如果相交, ...
- 九度OJ1172--哈夫曼树
哈夫曼树,第一行输入一个数n,表示叶结点的个数.需要用这些叶结点生成哈夫曼树,根据哈夫曼树的概念,这些结点有权值,即weight,题目需要输出所有结点的值与权值的乘积之和. 输入: 输入有多组数据.每 ...
- google map api 学习笔记
(1)地图的缩放监听函数 google.maps.event.addlistener(map,"zoom_change",function(){ 缩放级别变化后的函数. }); ( ...
- http://phantomjs.org/page-automation.html
http://phantomjs.org/page-automation.html install brew curl -LsSf http://github.com/mxcl/homebrew/ta ...
- Battle Over Cities (25)(DFS、连通图)
It is vitally important to have all the cities connected by highways in a war. If a city is occupied ...
- 十、mysql事务的简介
1. myisam跟memory支持表级别锁定 BDB 页级锁定 Innodb 行级锁定 2.表锁(不是表嫂哈) lock table read //只读表锁,也就是说执行了这个锁后,锁内的操作只能为 ...
- iOS 开发一年总结
收获很多 1. 一个人包办从构思, 设计, 实现, 推广的全过程, 对自己的能力, 特别是能力范围有很大的提升. 以前在公司上班仅仅局限在实现的局域内, 现在在做自己的产品时, 在设计时的取舍, 对工 ...
- WPF系列
一.ListView绑定数据源XML //前端代码 1 <Window x:Class="ListView读取XML数据.MainWindow" xmlns="ht ...
- Oracle的spool命令
在控制台上使用spool 路径+文件名 命令可以将整个过程写入指定的文件中, 结束使用spool off 命令, 当执行spool off后文件中的内容才能看见; ed命令修改当前缓冲区的上一条命令;
- vc编程时说“Cannot open include file: 'unistd.h': No such file or directory”
本文专自http://blog.csdn.net/mangobar/article/details/6314700 unistd.h是unix standard header之意,因此,Linux下开 ...