algorithm@ Shortest Path in Directed Acyclic Graph (O(|V|+|E|) time)
Given a Weighted Directed Acyclic Graph and a source vertex in the graph, find the shortest paths from given source to all other vertices.
For a general weighted graph, we can calculate single source shortest distances in O(VE) time using Bellman–Ford Algorithm. For a graph with no negative weights, we can do better and calculate single source shortest distances in O(E + VLogV) time using Dijkstra’s algorithm. Can we do even better for Directed Acyclic Graph (DAG)? We can calculate single source shortest distances in O(V+E) time for DAGs. The idea is to use Topological Sorting.
We initialize distances to all vertices as infinite and distance to source as 0, then we find a topological sorting of the graph. Topological Sorting of a graph represents a linear ordering of the graph (See below, figure (b) is a linear representation of figure (a) ). Once we have topological order (or linear representation), we one by one process all vertices in topological order. For every vertex being processed, we update distances of its adjacent using distance of current vertex.
Following figure is taken from this source. It shows step by step process of finding shortest paths.

Following is complete algorithm for finding shortest distances.
1) Initialize dist[] = {INF, INF, ….} and dist[s] = 0 where s is the source vertex.
2) Create a toplogical order of all vertices.
3) Do following for every vertex u in topological order.
………..Do following for every adjacent vertex v of u
………………if (dist[v] > dist[u] + weight(u, v))
………………………dist[v] = dist[u] + weight(u, v)
// Java program to find single source shortest paths in Directed Acyclic Graphs
import java.io.*;
import java.util.*; class ShortestPath
{
static final int INF=Integer.MAX_VALUE;
class AdjListNode
{
private int v;
private int weight;
AdjListNode(int _v, int _w) { v = _v; weight = _w; }
int getV() { return v; }
int getWeight() { return weight; }
} // Class to represent graph as an adjcency list of
// nodes of type AdjListNode
class Graph
{
private int V;
private LinkedList<AdjListNode>adj[];
Graph(int v)
{
V=v;
adj = new LinkedList[V];
for (int i=0; i<v; ++i)
adj[i] = new LinkedList<AdjListNode>();
}
void addEdge(int u, int v, int weight)
{
AdjListNode node = new AdjListNode(v,weight);
adj[u].add(node);// Add v to u's list
} // A recursive function used by shortestPath.
// See below link for details
void topologicalSortUtil(int v, Boolean visited[], Stack stack)
{
// Mark the current node as visited.
visited[v] = true;
Integer i; // Recur for all the vertices adjacent to this vertex
Iterator<AdjListNode> it = adj[v].iterator();
while (it.hasNext())
{
AdjListNode node =it.next();
if (!visited[node.getV()])
topologicalSortUtil(node.getV(), visited, stack);
}
// Push current vertex to stack which stores result
stack.push(new Integer(v));
} // The function to find shortest paths from given vertex. It
// uses recursive topologicalSortUtil() to get topological
// sorting of given graph.
void shortestPath(int s)
{
Stack stack = new Stack();
int dist[] = new int[V]; // Mark all the vertices as not visited
Boolean visited[] = new Boolean[V];
for (int i = 0; i < V; i++)
visited[i] = false; // Call the recursive helper function to store Topological
// Sort starting from all vertices one by one
for (int i = 0; i < V; i++)
if (visited[i] == false)
topologicalSortUtil(i, visited, stack); // Initialize distances to all vertices as infinite and
// distance to source as 0
for (int i = 0; i < V; i++)
dist[i] = INF;
dist[s] = 0; // Process vertices in topological order
while (stack.empty() == false)
{
// Get the next vertex from topological order
int u = (int)stack.pop(); // Update distances of all adjacent vertices
Iterator<AdjListNode> it;
if (dist[u] != INF)
{
it = adj[u].iterator();
while (it.hasNext())
{
AdjListNode i= it.next();
if (dist[i.getV()] > dist[u] + i.getWeight())
dist[i.getV()] = dist[u] + i.getWeight();
}
}
} // Print the calculated shortest distances
for (int i = 0; i < V; i++)
{
if (dist[i] == INF)
System.out.print( "INF ");
else
System.out.print( dist[i] + " ");
}
}
} // Method to create a new graph instance through an object
// of ShortestPath class.
Graph newGraph(int number)
{
return new Graph(number);
} public static void main(String args[])
{
// Create a graph given in the above diagram. Here vertex
// numbers are 0, 1, 2, 3, 4, 5 with following mappings:
// 0=r, 1=s, 2=t, 3=x, 4=y, 5=z
ShortestPath t = new ShortestPath();
Graph g = t.newGraph(6);
g.addEdge(0, 1, 5);
g.addEdge(0, 2, 3);
g.addEdge(1, 3, 6);
g.addEdge(1, 2, 2);
g.addEdge(2, 4, 4);
g.addEdge(2, 5, 2);
g.addEdge(2, 3, 7);
g.addEdge(3, 4, -1);
g.addEdge(4, 5, -2); int s = 1;
System.out.println("Following are shortest distances "+
"from source " + s );
g.shortestPath(s);
}
}
Output:
Following are shortest distances from source 1
INF 0 2 6 5 3
Time Complexity: Time complexity of topological sorting is O(V+E). After finding topological order, the algorithm process all vertices and for every vertex, it runs a loop for all adjacent vertices. Total adjacent vertices in a graph is O(E). So the inner loop runs O(V+E) times. Therefore, overall time complexity of this algorithm is O(V+E).
algorithm@ Shortest Path in Directed Acyclic Graph (O(|V|+|E|) time)的更多相关文章
- 拓扑排序-有向无环图(DAG, Directed Acyclic Graph)
条件: 1.每个顶点出现且只出现一次. 2.若存在一条从顶点 A 到顶点 B 的路径,那么在序列中顶点 A 出现在顶点 B 的前面. 有向无环图(DAG)才有拓扑排序,非DAG图没有拓扑排序一说. 一 ...
- AOJ GRL_1_C: All Pairs Shortest Path (Floyd-Warshall算法求任意两点间的最短路径)(Bellman-Ford算法判断负圈)
题目链接:http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=GRL_1_C All Pairs Shortest Path Input ...
- AOJ GRL_1_A: Single Source Shortest Path (Dijktra算法求单源最短路径,邻接表)
题目链接:http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=GRL_1_A Single Source Shortest Path In ...
- The Shortest Path in Nya Graph
Problem Description This is a very easy problem, your task is just calculate el camino mas corto en ...
- (中等) HDU 4725 The Shortest Path in Nya Graph,Dijkstra+加点。
Description This is a very easy problem, your task is just calculate el camino mas corto en un grafi ...
- HDU 4725 The Shortest Path in Nya Graph (最短路)
The Shortest Path in Nya Graph Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K ...
- Proof for Floyd-Warshall's Shortest Path Derivation Algorithm Also Demonstrates the Hierarchical Path Construction Process
(THIS BLOG WAS ORIGINALLY WRTITTEN IN CHINESE WITH LINK: http://www.cnblogs.com/waytofall/p/3732920. ...
- The Shortest Path in Nya Graph HDU - 4725
Problem Description This is a very easy problem, your task is just calculate el camino mas corto en ...
- HDU 4725 The Shortest Path in Nya Graph(最短路径)(2013 ACM/ICPC Asia Regional Online ―― Warmup2)
Description This is a very easy problem, your task is just calculate el camino mas corto en un grafi ...
随机推荐
- 58. Length of Last Word
题目: Given a string s consists of upper/lower-case alphabets and empty space characters ' ', return t ...
- 3、REST风格的URL
1.概述 HTTP协议里面,四个表示操作方式的动词:GET.POST.PUT.DELETE,它们分别对应四种基本的操作,GET用来获取资源,POST用来新建资源,PUT用来更新资源,DELETE用来删 ...
- PHP中该怎样防止SQL注入?
因为用户的输入可能是这样的: ? 1 value'); DROP TABLE table;-- 那么SQL查询将变成如下: ? 1 INSERT INTO `table` (`column`) VAL ...
- C/c++输入输出函数
最全输入函数 c/c++一:c=getchar();功能:读入一个字符说明:调用此函数时要求在程序的第一行有预编译命令:#include<stdio>,不过在做c++时 有#include ...
- 点(Dot)与像素(Pixel)的区别
DPI中的点(Dot)与图像分辨率中的像素(Pixel)是容易混淆的两个概念, DPI中的点可以说是硬件设备最小的显示单元, 而像素则既可是一个点,又可是多个点的集合.在扫描仪扫描图像时,扫描仪的每一 ...
- 1176. Hyperchannels(欧拉回路)
1176 给定一有向图 求其反图的欧拉回路 路径输反了 一直WA.. #include <iostream> #include<cstdio> #include<cstr ...
- linux 压缩/解压命令大全
.tar 解包:tar xvf FileName.tar打包:tar cvf FileName.tar DirName(注:tar是打包,不是压缩!)———————————————.gz解压1:gun ...
- UVa 10837 (欧拉函数 搜索) A Research Problem
发现自己搜索真的很弱,也许做题太少了吧.代码大部分是参考别人的,=_=|| 题意: 给出一个phi(n),求最小的n 分析: 回顾一下欧拉函数的公式:,注意这里的Pi是互不相同的素数,所以后面搜索的时 ...
- numa对MySQL多实例性能影响
numa对MySQL多实例性能影响,通过对numa将MySQL绑定在不同的CPU节点上,并且采用绑定的内存分配策略,强制在本节点内分配内存.具体测试如下:1.关闭numa(numa= interle ...
- c++ 完成端口资料
文章地址: http://blog.csdn.net/piggyxp/article/details/6922277 附件如下: word文档 PiggyIOCPServer_2008.rar Pig ...