Given a Weighted Directed Acyclic Graph and a source vertex in the graph, find the shortest paths from given source to all other vertices.
For a general weighted graph, we can calculate single source shortest distances in O(VE) time using Bellman–Ford Algorithm. For a graph with no negative weights, we can do better and calculate single source shortest distances in O(E + VLogV) time using Dijkstra’s algorithm. Can we do even better for Directed Acyclic Graph (DAG)? We can calculate single source shortest distances in O(V+E) time for DAGs. The idea is to use Topological Sorting.

We initialize distances to all vertices as infinite and distance to source as 0, then we find a topological sorting of the graph. Topological Sorting of a graph represents a linear ordering of the graph (See below, figure (b) is a linear representation of figure (a) ). Once we have topological order (or linear representation), we one by one process all vertices in topological order. For every vertex being processed, we update distances of its adjacent using distance of current vertex.

Following figure is taken from this source. It shows step by step process of finding shortest paths.

Following is complete algorithm for finding shortest distances.
1) Initialize dist[] = {INF, INF, ….} and dist[s] = 0 where s is the source vertex.
2) Create a toplogical order of all vertices.
3) Do following for every vertex u in topological order.
………..Do following for every adjacent vertex v of u
………………if (dist[v] > dist[u] + weight(u, v))
………………………dist[v] = dist[u] + weight(u, v)

// Java program to find single source shortest paths in Directed Acyclic Graphs
import java.io.*;
import java.util.*; class ShortestPath
{
static final int INF=Integer.MAX_VALUE;
class AdjListNode
{
private int v;
private int weight;
AdjListNode(int _v, int _w) { v = _v; weight = _w; }
int getV() { return v; }
int getWeight() { return weight; }
} // Class to represent graph as an adjcency list of
// nodes of type AdjListNode
class Graph
{
private int V;
private LinkedList<AdjListNode>adj[];
Graph(int v)
{
V=v;
adj = new LinkedList[V];
for (int i=0; i<v; ++i)
adj[i] = new LinkedList<AdjListNode>();
}
void addEdge(int u, int v, int weight)
{
AdjListNode node = new AdjListNode(v,weight);
adj[u].add(node);// Add v to u's list
} // A recursive function used by shortestPath.
// See below link for details
void topologicalSortUtil(int v, Boolean visited[], Stack stack)
{
// Mark the current node as visited.
visited[v] = true;
Integer i; // Recur for all the vertices adjacent to this vertex
Iterator<AdjListNode> it = adj[v].iterator();
while (it.hasNext())
{
AdjListNode node =it.next();
if (!visited[node.getV()])
topologicalSortUtil(node.getV(), visited, stack);
}
// Push current vertex to stack which stores result
stack.push(new Integer(v));
} // The function to find shortest paths from given vertex. It
// uses recursive topologicalSortUtil() to get topological
// sorting of given graph.
void shortestPath(int s)
{
Stack stack = new Stack();
int dist[] = new int[V]; // Mark all the vertices as not visited
Boolean visited[] = new Boolean[V];
for (int i = 0; i < V; i++)
visited[i] = false; // Call the recursive helper function to store Topological
// Sort starting from all vertices one by one
for (int i = 0; i < V; i++)
if (visited[i] == false)
topologicalSortUtil(i, visited, stack); // Initialize distances to all vertices as infinite and
// distance to source as 0
for (int i = 0; i < V; i++)
dist[i] = INF;
dist[s] = 0; // Process vertices in topological order
while (stack.empty() == false)
{
// Get the next vertex from topological order
int u = (int)stack.pop(); // Update distances of all adjacent vertices
Iterator<AdjListNode> it;
if (dist[u] != INF)
{
it = adj[u].iterator();
while (it.hasNext())
{
AdjListNode i= it.next();
if (dist[i.getV()] > dist[u] + i.getWeight())
dist[i.getV()] = dist[u] + i.getWeight();
}
}
} // Print the calculated shortest distances
for (int i = 0; i < V; i++)
{
if (dist[i] == INF)
System.out.print( "INF ");
else
System.out.print( dist[i] + " ");
}
}
} // Method to create a new graph instance through an object
// of ShortestPath class.
Graph newGraph(int number)
{
return new Graph(number);
} public static void main(String args[])
{
// Create a graph given in the above diagram. Here vertex
// numbers are 0, 1, 2, 3, 4, 5 with following mappings:
// 0=r, 1=s, 2=t, 3=x, 4=y, 5=z
ShortestPath t = new ShortestPath();
Graph g = t.newGraph(6);
g.addEdge(0, 1, 5);
g.addEdge(0, 2, 3);
g.addEdge(1, 3, 6);
g.addEdge(1, 2, 2);
g.addEdge(2, 4, 4);
g.addEdge(2, 5, 2);
g.addEdge(2, 3, 7);
g.addEdge(3, 4, -1);
g.addEdge(4, 5, -2); int s = 1;
System.out.println("Following are shortest distances "+
"from source " + s );
g.shortestPath(s);
}
}

Output:

Following are shortest distances from source 1
INF 0 2 6 5 3

Time Complexity: Time complexity of topological sorting is O(V+E). After finding topological order, the algorithm process all vertices and for every vertex, it runs a loop for all adjacent vertices. Total adjacent vertices in a graph is O(E). So the inner loop runs O(V+E) times. Therefore, overall time complexity of this algorithm is O(V+E).

algorithm@ Shortest Path in Directed Acyclic Graph (O(|V|+|E|) time)的更多相关文章

  1. 拓扑排序-有向无环图(DAG, Directed Acyclic Graph)

    条件: 1.每个顶点出现且只出现一次. 2.若存在一条从顶点 A 到顶点 B 的路径,那么在序列中顶点 A 出现在顶点 B 的前面. 有向无环图(DAG)才有拓扑排序,非DAG图没有拓扑排序一说. 一 ...

  2. AOJ GRL_1_C: All Pairs Shortest Path (Floyd-Warshall算法求任意两点间的最短路径)(Bellman-Ford算法判断负圈)

    题目链接:http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=GRL_1_C All Pairs Shortest Path Input ...

  3. AOJ GRL_1_A: Single Source Shortest Path (Dijktra算法求单源最短路径,邻接表)

    题目链接:http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=GRL_1_A Single Source Shortest Path In ...

  4. The Shortest Path in Nya Graph

    Problem Description This is a very easy problem, your task is just calculate el camino mas corto en ...

  5. (中等) HDU 4725 The Shortest Path in Nya Graph,Dijkstra+加点。

    Description This is a very easy problem, your task is just calculate el camino mas corto en un grafi ...

  6. HDU 4725 The Shortest Path in Nya Graph (最短路)

    The Shortest Path in Nya Graph Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K ...

  7. Proof for Floyd-Warshall's Shortest Path Derivation Algorithm Also Demonstrates the Hierarchical Path Construction Process

    (THIS BLOG WAS ORIGINALLY WRTITTEN IN CHINESE WITH LINK: http://www.cnblogs.com/waytofall/p/3732920. ...

  8. The Shortest Path in Nya Graph HDU - 4725

    Problem Description This is a very easy problem, your task is just calculate el camino mas corto en ...

  9. HDU 4725 The Shortest Path in Nya Graph(最短路径)(2013 ACM/ICPC Asia Regional Online ―― Warmup2)

    Description This is a very easy problem, your task is just calculate el camino mas corto en un grafi ...

随机推荐

  1. 6、JPA_映射单向多对一的关联关系(n的一方有1的引用,1的一方没有n的集合属性)

    单向多对一的关联关系 具体体现:n的一方有1的引用,1的一方没有n的集合属性 举个例子:订单Order对顾客Customer是一个单向多对一的关联关系.Order是n的一方,有对Customer的引用 ...

  2. th固定 td滚动的表格实现

    为什么这样? 体验好 原理 通过两个表格,使其th td 对应,产生一种错觉. 代码 1.html <div class="content"> <div clas ...

  3. Codeforces Round #248 (Div. 2) C. Ryouko's Memory Note (vector 替换)

    题目链接 题意:给m个数字, 这些数字都不大于 n,  sum的值为相邻两个数字 差的绝对值.求这n个数字里把一个数字 用 其中另一个数字代替以后, 最小的sum值. 分析:刚开始以为两个for 最坏 ...

  4. poj 3790 Recursively Palindromic Partitions (递推)

    题目 题意:求输入的数字的递归回文. 思路:答案等于这个数字一半之前的所有的 之和. #include <iostream> #include <cstdio> #includ ...

  5. Hibernate学习笔记之EHCache的配置

    Hibernate默认二级缓存是不启动的,启动二级缓存(以EHCache为例)需要以下步骤: 1.添加相关的包: Ehcache.jar和commons-logging.jar,如果hibernate ...

  6. ASP.NET MVC 学习4、Controller中添加SearchIndex页面,实现简单的查询功能

    参考:http://www.asp.net/mvc/tutorials/mvc-4/getting-started-with-aspnet-mvc4/examining-the-edit-method ...

  7. UVA 10537 The Toll! Revisited uva1027 Toll(最短路+数学坑)

    前者之所以叫加强版,就是把uva1027改编了,附加上打印路径罢了. 03年的final题哦!!虽然是水题,但不是我这个只会做图论题的跛子能轻易尝试的——因为有个数学坑. 题意:运送x个货物从a-&g ...

  8. UVA 10917 Walk Through the Forest(dijkstra+DAG上的dp)

    用新模板阿姨了一天,换成原来的一遍就ac了= = 题意很重要..最关键的一句话是说:若走A->B这条边,必然是d[B]<d[A],d[]数组保存的是各点到终点的最短路. 所以先做dij,由 ...

  9. Android02--debug.keystore的注册信息

    1 -- 签名文件的密钥 默认签名文件的密码是:android 该文件的存放点是: 2 -- 签名文件的签名信息 keytool -list -v -keystore C:\Users\motadou ...

  10. order by调优的一些测试

    表结构信息:mysql> show create table tb\G*************************** 1. row *************************** ...