bzoj4810 [Ynoi2017]由乃的玉米田 bitset优化+暴力+莫队
[Ynoi2017]由乃的玉米田
Time Limit: 30 Sec Memory Limit: 256 MB
Submit: 917 Solved: 447
[Submit][Status][Discuss]
Description
.jpg)
Input
Output
Sample Input
1 1 2 3 4
2 1 1 2
1 1 2 2
3 1 1 1
3 5 5 16
1 2 3 4
Sample Output
yumi
yuno
yuno
yumi
HINT
Source
题解:一开始以为是数据结构题,然后想了好久,题目也有一个坑点,可以选两个同位置的数,就是可以选相同的数。
然后对于乘法的话,根号枚举即可,对于加法减法怎么办,可以用bitset优化,因为值的数据范围不大,
所以我们可以x-y=z,那么x这个bitset右移z位,判断一下,和原来有没有交即可,对于区间的话还是需要莫队一下的
对于加法x+y=z,貌似可以向左移,但是这里转换了以下,换成c-y,然后,x右移 c-(c-y)=+y,所以就可以了,
这样复杂度是呢n^2/32的,莫队是并列的不是嵌套。
#include<cstring>
#include<cmath>
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<bitset> #define N 400007
using namespace std;
inline int read()
{
int x=,f=;char ch=getchar();
while(!isdigit(ch)){if(ch=='-')f=-;ch=getchar();}
while(isdigit(ch)){x=(x<<)+(x<<)+ch-'';ch=getchar();}
return x*f;
} int n,m,c,blo;
int a[N],b[N],bel[N],ans[N],num[N];
struct Node
{
int opt,l,r,x,id;
friend bool operator<(Node x,Node y)
{
if (bel[x.l]==bel[y.l]) return x.r<y.r;
else return bel[x.l]<bel[y.l];
}
}q[N];
bitset<>f,g,h; void add(int x)
{
num[a[x]]++;
if (num[a[x]]==)
{
f[a[x]]=;
g[b[x]]=;
}
}
void del(int x)
{
num[a[x]]--;
if (num[a[x]]==)
{
f[a[x]]=;
g[b[x]]=;
}
}
bool query(Node w)
{
if (w.opt==)
{
int up=sqrt(w.x);
for (int i=;i<=up;i++)
if (w.x%i==) if (num[i]&&num[w.x/i]) return true;
}
else if (w.opt==)
{
h=g;
h>>=(c-w.x);
h&=f;
if (h.count()) return true;
}
else
{
h=f;
h>>=w.x;
h&=f;
if (h.count()) return true;
}
return false;
}
void solve_modui()
{
int l=,r=;
for (int i=;i<=m;i++)
{
for (;r<q[i].r;r++)add(r+);
for (;r>q[i].r;r--)del(r);
for (;l<q[i].l;l++)del(l);
for (;l>q[i].l;l--)add(l-);
ans[q[i].id]=query(q[i]);
}
for (int i=;i<=m;i++)
if (ans[i]) puts("yuno");
else puts("yumi");
}
int main()
{
n=read(),m=read(),blo=*sqrt(n),c=;
for (int i=;i<=n;i++)
a[i]=read(),b[i]=c-a[i],bel[i]=(i-)/blo+;
for (int i=;i<=m;i++)
q[i].opt=read(),q[i].l=read(),q[i].r=read(),q[i].x=read(),q[i].id=i;
sort(q+,q+m+);
solve_modui();
}
bzoj4810 [Ynoi2017]由乃的玉米田 bitset优化+暴力+莫队的更多相关文章
- 【BZOJ4810】[Ynoi2017]由乃的玉米田 bitset+莫队
[BZOJ4810][Ynoi2017]由乃的玉米田 Description 由乃在自己的农田边散步,她突然发现田里的一排玉米非常的不美.这排玉米一共有N株,它们的高度参差不齐.由乃认为玉米田不美,所 ...
- LuoguP3674 小清新人渣的本愿 && BZOJ4810: [Ynoi2017]由乃的玉米田
题目地址 小清新人渣的本愿 [Ynoi2017]由乃的玉米田 所以这两题也就输出不一样而已 题解 这种lxl的题还是没修改操作的题基本就是莫队 分开考虑每个询问 1.减法 \(a-b=x⇒a=b+x\ ...
- BZOJ4810:[YNOI2017]由乃的玉米田(莫队,bitset)
Description 由乃在自己的农田边散步,她突然发现田里的一排玉米非常的不美.这排玉米一共有N株,它们的高度参差不齐. 由乃认为玉米田不美,所以她决定出个数据结构题 这个题是这样的: 给你一 ...
- BZOJ4810 Ynoi2017由乃的玉米田(莫队+bitset)
多组询问不强制在线,那么考虑莫队.bitset维护当前区间出现了哪些数,数组记录每个数的出现次数以维护bitset.对于乘法,显然应有一个根号范围内的因子,暴力枚举即可.对于减法,a[i]-a[j]= ...
- bzoj4810 [Ynoi2017]由乃的玉米田 莫队+bitset(+数论)
题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4810 题解 看数据范围和题目名字应该是根号算法. 因为询问除了区间外,还有第 \(3\) 个参 ...
- bzoj4810 [Ynoi2017]由乃的玉米田
Description 由乃在自己的农田边散步,她突然发现田里的一排玉米非常的不美.这排玉米一共有N株,它们的高度参差不齐. 由乃认为玉米田不美,所以她决定出个数据结构题 这个题是这样的: 给你一 ...
- BZOJ 4810 [Ynoi2017]由乃的玉米田 ——Bitset 莫队算法
加法和减法的操作都能想到Bitset. 然后发现乘法比较难办,反正复杂度已经是$O(n\log{n})$了 枚举因数也不能更差了,直接枚举就好了. #include <map> #incl ...
- 【BZOJ4810】[YNOI2017] 由乃的玉米田(莫队+bitset)
点此看题面 大致题意: 给你一段序列,每次询问一段区间内是否存在两个数的差或和或积为\(x\). 莫队算法 看到区间询问+可以离线,首先想到了莫队啊. 但是,在较短的时间内更新信息依然比较难以实现. ...
- 【bzoj4810】[Ynoi2017]由乃的玉米田 莫队算法+STL-bitset
题目描述 由乃在自己的农田边散步,她突然发现田里的一排玉米非常的不美.这排玉米一共有N株,它们的高度参差不齐. 由乃认为玉米田不美,所以她决定出个数据结构题 这个题是这样的: 给你一个序列a,长度为n ...
随机推荐
- EF中如何为表添加新的字段和映射
首先先了解一下ef生成的模型edmx的代码,传送门:http://www.cnblogs.com/yushengbo/p/4807715.html 一.添加新的字段 例子就用我现在项目的这个吧,首先在 ...
- 【Linux 运维】linux系统关机、重启、注销命令
linux 关机.重启.注销命令: 关机命令: shutdown -h now 立刻关机(生产常用) shutdown -h +1 一分钟后关机 ( shutdown -c 可以将 ...
- 【第三章】MySQL数据库的字段约束:数据完整性、主键、外键、非空、默认值、自增、唯一性
一.表完整性约束 作用:用于保证数据的完整性和一致性==============================================================约束条件 说明PRIM ...
- 【主席树维护mex】 【SG函数递推】 Problem H. Cups and Beans 2017.8.11
Problem H. Cups and Beans 2017.8.11 原题: There are N cups numbered 0 through N − 1. For each i(1 ≤ i ...
- Sublime Text 插件推荐——for web developers
楼主向高大上的: web front-end development engineer (好吧,google就是这样翻译的 ^_^)们推荐 ST 插件,在此抛砖引玉: NO.1 :Emmet (原名: ...
- # ML学习小笔记—Classification
关于本课程的相关资料http://speech.ee.ntu.edu.tw/~tlkagk/courses_ML17.html 通过模型可以分类输入,此时根据分类结果的正确与否会有一个Loss函数.找 ...
- android入门 — PopupWindow
第一步:自定义xml文件 第二步:获取LayoutInflater对象 第三步:调用inflate()方法获取View对象 第四步:创建PopupWindow对象 第五步:调用PopupWindow的 ...
- UCP协议
UDP只在ip数据报的服务上增加了一点功能,就是复用和分用还有差错检验的功能 (1)UDP是面向无连接:发送之前不需要建立连接,减少了时间延续 (2)UDP只是尽最大努力交付,不能保证无措 (3)UD ...
- C# HttpWebRequest post提交数据,提交对象
1.客户端方法 //属于客户端 //要向URL Post的方法 public void PostResponse() { HttpWebRequest req = (HttpWebRequest)Ht ...
- Mysql8 忘记Root密码(转)
第一步:修改配置文件免密码登录mysql vim /etc/my.cnf 1.2 在 [mysqld]最后加上如下语句 并保持退出文件: skip-grant-tables 1.3 重启mysql服务 ...