本课主题

  • Job Stage 划分算法解密
  • Task 最佳位置算法实现解密

引言

作业调度的划分算法以及 Task 的最佳计算位置的算法,因为 Stage 的划分是DAGScheduler 工作的核心,这也是关系到整个作业有集群中该怎么运行;其次就是数据本地性,Spark 一般的代码都是链式表达的,这就让一个任务什么时候划分成 Stage,在大数据世界要追求最大化的数据本地性,所有最大化的数据本地性就是在数据计算的时候,数据就在内存中。希望这篇文章能为读者带出以下的启发:

  • 了解 Stage 的具体是如何划分的
  • 了解 数据本地性的最大化

Job Stage 划分算法解密

  1. Spark Application 中可以因为不同的Action 触发众多的Job,也就是一个Application 中可以有很多的Job ,每个Job 是由一个或者多个Stage 构成的,后面的Stage 依赖前面的Stage; 也就是说只有前面的依赖的Stage 计算完毕后,后面的Stage 才会运行;
  2. Stage 划分的依据就是宽依赖,什么时侯产生宽依赖呢?例如 reduceByKey、groupByKey 等等;
  3. 由 Action (例如collect) 导致了SparkContext.runJob 最终导致了 DAGScheduler 中的 submitJob 执行。





    它会等待作业提交的结果,然后判断一下成功或者是失败来进行下一步操作
  4. 其核心是通过发送一个case class JobSubmitted 对象给 eventProcessLoop

    其中JobSubmitted 源码如下:因为需要创建不同的实例,所以要弄一个case class 而不是case object,case object 一般是以全区唯一的变量去使用。
  5. 这里开了一条线程,用 post 的方式把消息交在队例中,由于你把它放在队例中它就会不断的循环去拿消息,它转过来就调用回调方法 onReceive( ),eventProcessLoop 是 一个消息循环器,它是 DAGSchedulerEvent 的具体实例,eventLoop 是一个 Link的blockingQueue。
      
    而DAGSchedulerEventProcessLoop 是 EventLoop 的子类,具体实现 eventLoop 的 onReceive 方法,onReceive方法转过来回调 doOnReceive( )

  6. 在 doOnReceive 这个类中有接收 JobSubmitted 的判断,转过来调用 handleJobSubmitted 的方法

    思考题:为什么要再开一条线程搞一个消息循环器呢?因为有对例你就可以接受多个作业的提交,就是异步处理多 Job,这里背后有一个很重要的理念,就是如果无论是你自己发消息,还是别人发消息,你都采用一个线程去处理的话,这个时候处理的方式就是统一的,你的思路是一致的,这样你的扩展性就会非常的好,代码也会很乾净。

处理 Job 时的过程和逻辑

handleJobSubmitted( ) -->

  1. 调用 JobSubmitted 的方法,在这里用了一个消息循环器就可以统一对消息进行处理,在 handleJobSubmitted 中首先创建 finalStage,创建 finalStage 时会建立父 Stage 的依赖链条,这里是在这个算法里用的数据结构:




    如果没有之前没有 visited 就把放在 visited 的数据结构中,然后判断一下它的依赖关系,如果是宽依赖的话就新增一个 Stage

处理 missingParent

  1. 处理 missingParent

SubmitJob

  1. submitJob

 

Task 最佳位置算法实现解密

  1. 从 submitMissingTask 开始找出它的数据本地算法
     
  2. 在具体算法实现的时候,会首先查询 DAGScheduler 的內存数据结构中是否存在当前 Partition 的数据本地性的信息,如果有得话就直接返回;如果沒有首先会调用 rdd.getPreferredLocations.例如想让 Spark 运行在 HBase 上或者一种現在还沒有直接的数据库上面,此时开发者需要自定义 RDD,为了保证 Task 数据本地性,最为关键的方法就是必需实现 RDD 的 getPreferredLocations
  3. DAGScheduler 计算数据本地性的时候,巧妙的借助了RDD 自身的getPreferredLocations 中的数据,最大化的优化了效率,因为getPreferredLocations 中表明了每个Partition 的数据本地性,虽然当前Partition 可能被persists 或者是checkpoint,但是persists 或者是checkpoint默认情况下肯定是和getPreferredLocations 中的数据本地性是一致的,所以这就更大的优化了Task 的数据本地性算法的显现和效率的优化

总结

Stage划分和Task最佳位置算法源码彻底解密的更多相关文章

  1. [Spark内核] 第34课:Stage划分和Task最佳位置算法源码彻底解密

    本課主題 Job Stage 划分算法解密 Task 最佳位置算法實現解密 引言 作业调度的划分算法以及 Task 的最佳位置的算法,因为 Stage 的划分是DAGScheduler 工作的核心,这 ...

  2. Spark 源码解析:TaskScheduler的任务提交和task最佳位置算法

    上篇文章<  Spark 源码解析 : DAGScheduler中的DAG划分与提交 >介绍了DAGScheduler的Stage划分算法. 本文继续分析Stage被封装成TaskSet, ...

  3. diff.js 列表对比算法 源码分析

    diff.js列表对比算法 源码分析 npm上的代码可以查看 (https://www.npmjs.com/package/list-diff2) 源码如下: /** * * @param {Arra ...

  4. Atitit 图像清晰度 模糊度 检测 识别 评价算法 源码实现attilax总结

    Atitit 图像清晰度 模糊度 检测 识别 评价算法 源码实现attilax总结 1.1. 原理,主要使用像素模糊后的差别会变小1 1.2. 具体流程1 1.3. 提升性能 可以使用采样法即可..1 ...

  5. mahout算法源码分析之Collaborative Filtering with ALS-WR (四)评价和推荐

    Mahout版本:0.7,hadoop版本:1.0.4,jdk:1.7.0_25 64bit. 首先来总结一下 mahout算法源码分析之Collaborative Filtering with AL ...

  6. mahout算法源码分析之Collaborative Filtering with ALS-WR拓展篇

    Mahout版本:0.7,hadoop版本:1.0.4,jdk:1.7.0_25 64bit. 额,好吧,心头的一块石头总算是放下了.关于Collaborative Filtering with AL ...

  7. mahout算法源码分析之Collaborative Filtering with ALS-WR 并行思路

    Mahout版本:0.7,hadoop版本:1.0.4,jdk:1.7.0_25 64bit. mahout算法源码分析之Collaborative Filtering with ALS-WR 这个算 ...

  8. zookeeper集群搭建及Leader选举算法源码解析

    第一章.zookeeper概述 一.zookeeper 简介 zookeeper 是一个开源的分布式应用程序协调服务器,是 Hadoop 的重要组件. zooKeeper 是一个分布式的,开放源码的分 ...

  9. 基于单层决策树的AdaBoost算法源码

    基于单层决策树的AdaBoost算法源码 Mian.py # -*- coding: utf-8 -*- # coding: UTF-8 import numpy as np from AdaBoos ...

随机推荐

  1. 【转】selenium自动化测试用例需要关注的几点(一)

    自动化测试设计简介  注:参看文章地址 我们在本章提供的信息,对自动化测试领域的新人和经验丰富的老手都是有用的.本篇中描述最常见的自动化测试类型, 还描述了可以增强您的自动化测试套件可维护性和扩展性的 ...

  2. linux install tomcat

    折腾了好久,按照官网的安装流程安装了不止3次,发现还是不能成功,最终发现是linux机器本身的问题,因为我用的公司的virtual machine,可能是机器本身在一次迁移的过程当中出现了问题,导致了 ...

  3. 一站式机器学习平台TI-ONE是什么?——云+未来峰会开发者专场回顾

    欢迎大家前往腾讯云+社区,获取更多腾讯海量技术实践干货哦~ 背景:5月23-24日,以“焕启”为主题的腾讯“云+未来”峰会在广州召开,广东省各级政府机构领导.海内外业内学术专家.行业大咖及技术大牛等在 ...

  4. 基于resteasy,Base64码上传文件

    package com.xgt.controller.bs; import com.xgt.bean.bs.VersionBean; import com.xgt.common.BaseControl ...

  5. php实现对数组进行编码转换

    1.转换GB2312编码为UTF-8 //更改编码为utf8 protected function array2utf8($array){ $array = array_map(function($v ...

  6. Hibernate 学习(一)

    一.Hibernate 简介 1.Hibernate 简介 Hibernate是一个开放源代码的对象关系映射(ORM)框架,它对JDBC进行了非常轻量级的对象封装,它将POJO与数据库表建立映射关系, ...

  7. 用c+libcurl+PCRE写爬虫1--编译libcurl

    打算用c语言和libcurl库在windows下实现一些爬虫操作. 一.编译libcurl 1.编译zlib 1)下载zlib http://sourceforge.net/projects/libp ...

  8. 读EntityFramework.DynamicFilters源码_心得_设计思想_04

    前几次,我们从说明文档,示例,单元测试了解了怎么用这个动态过滤器,那么如果仅仅是为了实现目的,知道怎么用就可以完成相应的功能开发,但我还想了解的问题是 作者是怎么将动态过滤器与EF结合的 有哪些设计思 ...

  9. [C]逗号运算符

    https://baike.baidu.com/item/%E9%80%97%E5%8F%B7%E8%BF%90%E7%AE%97%E7%AC%A6/7959271?fr=aladdin

  10. FLASK实现上传下载功能

    #!-*-coding=utf-8-*- # from flask import Flask # # app = Flask(__name__) # # # @app.route('/') # def ...