Description

The stable marriage problem consists of matching members of two different sets according to the member’s preferences for the other set’s members. The input for our problem consists of:

  • a set M of n males;
  • a set F of n females;
  • for each male and female we have a list of all the members of the opposite gender in order of preference (from the most preferable to the least).

A marriage is a one-to-one mapping between males and females. A marriage is called stable, if there is no pair (mf) such that f ∈ F prefers m ∈ M to her current partner and m prefers f over his current partner. The stable marriage A is called male-optimal if there is no other stable marriage B, where any male matches a female he prefers more than the one assigned in A.

Given preferable lists of males and females, you must find the male-optimal stable marriage.

Input

The first line gives you the number of tests. The first line of each test case contains integer n (0 < n < 27). Next line describes n male and n female names. Male name is a lowercase letter, female name is an upper-case letter. Then go n lines, that describe preferable lists for males. Next n lines describe preferable lists for females.

Output

For each test case find and print the pairs of the stable marriage, which is male-optimal. The pairs in each test case must be printed in lexicographical order of their male names as shown in sample output. Output an empty line between test cases.

题目大意:就是稳定婚姻问题,要求男士最优

思路:直接套用Gale-Shapley算法即可

PS:直接用数字不就好了吗非要用字符……

 #include <cstdio>
#include <queue>
#include <cstring>
#include <map>
using namespace std; const int MAXN = ; int pref[MAXN][MAXN], order[MAXN][MAXN], next[MAXN];
int future_husband[MAXN], future_wife[MAXN];
queue<int> que;
map<char, int> mp; void engage(int man, int woman){
int &m = future_husband[woman];
if(m){
future_wife[m] = ;
que.push(m);
}
future_husband[woman] = man;
future_wife[man] = woman;
} int n, T; void GaleShapley(){
while(!que.empty()){
int man = que.front(); que.pop();
int woman = pref[man][next[man]++];
if(!future_husband[woman] || order[woman][man] < order[woman][future_husband[woman]])
engage(man, woman);
else que.push(man);
}
for(char c = 'a'; c <= 'z'; ++c) if(mp[c])
printf("%c %c\n", c, future_wife[mp[c]] + 'A' - );
} int main(){
char s[MAXN], c[];
scanf("%d", &T);
while(T--){
if(!que.empty()) que.pop();
mp.clear();
memset(pref,,sizeof(pref));
memset(order,,sizeof(order));
memset(future_husband,,sizeof(future_husband));
memset(future_wife,,sizeof(future_wife));
scanf("%d", &n);
for(int i = ; i <= n; ++i) scanf("%s", c), mp[c[]] = i;
for(int i = ; i <= n; ++i) scanf("%s", c), mp[c[]] = i;
for(int i = ; i < n; ++i){
scanf("%s", s);
for(int j = ; s[j]; ++j) pref[mp[s[]]][j-] = mp[s[j]];
next[mp[s[]]] = ;
que.push(mp[s[]]);
}
for(int i = ; i < n; ++i){
scanf("%s", s);
for(int j = ; s[j]; ++j) order[mp[s[]]][mp[s[j]]] = j-;
}
GaleShapley();
if(T) printf("\n");
}
}

16MS

POJ 3487 The Stable Marriage Problem(稳定婚姻问题 模版题)的更多相关文章

  1. poj 3478 The Stable Marriage Problem 稳定婚姻问题

    题目给出n个男的和n个女的各自喜欢对方的程度,让你输出一个最佳搭配,使得他们全部人的婚姻都是稳定的. 所谓不稳婚姻是说.比方说有两对夫妇M1,F1和M2,F2,M1的老婆是F1,但他更爱F2;而F2的 ...

  2. 【POJ 3487】 The Stable Marriage Problem (稳定婚姻问题)

    The Stable Marriage Problem   Description The stable marriage problem consists of matching members o ...

  3. [POJ 3487]The Stable Marriage Problem

    Description The stable marriage problem consists of matching members of two different sets according ...

  4. 【转】稳定婚姻问题(Stable Marriage Problem)

    转自http://www.cnblogs.com/drizzlecrj/archive/2008/09/12/1290176.html 稳定婚姻是组合数学里面的一个问题. 问题大概是这样:有一个社团里 ...

  5. The Stable Marriage Problem

    经典稳定婚姻问题 “稳定婚姻问题(The Stable Marriage Problem)”大致说的就是100个GG和100个MM按照自己的喜欢程度给所有异性打分排序.每个帅哥都凭自己好恶给每个MM打 ...

  6. HDOJ 1914 The Stable Marriage Problem

    rt 稳定婚姻匹配问题 The Stable Marriage Problem Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 6553 ...

  7. 【HDU1914 The Stable Marriage Problem】稳定婚姻问题

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1914 题目大意:问题大概是这样:有一个社团里有n个女生和n个男生,每位女生按照她的偏爱程度将男生排序, ...

  8. 【HDOJ】1914 The Stable Marriage Problem

    稳定婚姻问题,Gale-Shapley算法可解. /* 1914 */ #include <iostream> #include <sstream> #include < ...

  9. hdoj1435 Stable Match(稳定婚姻问题)

    简单稳定婚姻问题. 题目描述不够全面,当距离相同时容量大的优先选择. 稳定婚姻问题不存在无解情况. #include<iostream> #include<cstring> # ...

随机推荐

  1. grid 布局的使用

    grid 布局的使用 css 网格布局,是一种二维布局系统. 浏览器支持情况:老旧浏览器不支持, 概念: 网格容器.元素应用dispalay:grid,它是所有网格项的父元素. <div cla ...

  2. React-Reflux 基础分享

    因工作需要使用 React + Reflux 开发,最近几天都在努力学习着,特别是 Reflux,在网上查找的许多资料和 github 上的文档年代都有点久远,JavaScript 按照目前的节奏,更 ...

  3. 『ACM C++』 PTA 天梯赛练习集L1 | 044-45

    记录今日刷题 ------------------------------------------------L1-044--------------------------------------- ...

  4. Python豆瓣源

    pip install -i https://pypi.doubanio.com/simple/ xxxx

  5. 使用泛型与不使用泛型的Map的遍历

    https://www.cnblogs.com/fqfanqi/p/6187085.html

  6. php函数strtotime结合date时间修饰语的使用

    下面简单介绍在项目开发中date时间函数和strtotime所遇到的问题,以及解决办法. 原文地址:小时刻个人技术博客 > http://small.aiweimeng.top/index.ph ...

  7. day 18 类与类之间的关系

    类与类之间的关系     在我们的世界中事物和事物之间总会有一些联系.    在面向对象中,类和类之间也可以产生相关的关系 1.依赖关系     执行某个动作的时候. 需要xxx来帮助你完成这个操作, ...

  8. kafka zk常用命令

    1  创建topic: kafka-topics.sh --create --zookeeper 3.3.3.3:2181 --replication-factor 1 --partitions 3 ...

  9. python新手学习之文件读写之修改

    文件除r.w.a方式打开外,还可以有多种组合方式如r+ w+ a+等多种方式 1.r+ 读写模式介绍,开始读是从一行开始读,写永远从最后开始写(类似于追加) # f = open("test ...

  10. for循环删除列表中元素遇到的漏删的问题(python)

    问题描述:python中通过for循环来删除列表中的两个相邻的元素,存在漏删的问题 比如说下面的例子,准备删掉2和3,但是结果是2删掉了,3没删掉 是因为把2删掉后3的下标就变成了1,但是原本下标为1 ...