HDU 2489 Minimal Ratio Tree(暴力+最小生成树)(2008 Asia Regional Beijing)
Description
Input
All the weights of both nodes and edges (except for the ones on the diagonal of the matrix) are integers and in the range of [1, 100].
The figure below illustrates the first test case in sample input. Node 1 and Node 3 form the minimal ratio tree.
Output
题目大意:给n个点,一个完全图,要求你选出m个点和m-1条边组成一棵树,其中sum(边权)/sum(点权)最小,并且字典序最小,输出这m个点。
思路:大水题,n个选m个,$C_{n}^{m}$最大也不到1W,最小生成树算法也才$O(n^2)$,果断暴力。暴力枚举选和不选,然后用最小生成树求sum(边权),逐个比较即可。
PS:太久没写最小生成树结果混入了最短路的东西结果WA了>_<
代码(15MS):
#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std; const int MAXN = ;
const int INF = 0x3fff3fff; int mat[MAXN][MAXN];
int weight[MAXN];
int n, m;
bool use[MAXN], vis[MAXN];
int dis[MAXN]; int prim(int st) {
memset(vis, , sizeof(vis));
vis[st] = true;
for(int i = ; i <= n; ++i) dis[i] = mat[st][i];
int ret = ;
for(int cnt = ; cnt < m; ++cnt) {
int u, min_dis = INF;
for(int i = ; i <= n; ++i)
if(use[i] && !vis[i] && dis[i] < min_dis) u = i, min_dis = dis[i];
ret += min_dis;
vis[u] = true;
for(int i = ; i <= n; ++i)
if(use[i] && !vis[i] && dis[i] > mat[u][i]) dis[i] = mat[u][i];
}
return ret;
} bool ans[MAXN];
int ans_pw, ans_ew; void dfs(int dep, int cnt, int sum_pw) {
if(cnt == m) {
int sum_ew = prim(dep - );
if(ans_ew == INF || ans_ew * sum_pw > ans_pw * sum_ew) {//ans_ew/ans_pw > sum_ew/sum_pw
for(int i = ; i <= n; ++i) ans[i] = use[i];
ans_ew = sum_ew; ans_pw = sum_pw;
}
return ;
}
if(dep == n + ) return ;
use[dep] = true;
dfs(dep + , cnt + , sum_pw + weight[dep]);
use[dep] = false;
dfs(dep + , cnt, sum_pw);
} int main() {
while(scanf("%d%d", &n, &m) != EOF) {
if(n == && m == ) break;
for(int i = ; i <= n; ++i) scanf("%d", &weight[i]);
for(int i = ; i <= n; ++i) {
for(int j = ; j <= n; ++j) scanf("%d", &mat[i][j]);
}
ans_ew = INF; ans_pw = ;
dfs(, , );
bool flag = false;
for(int i = ; i <= n; ++i) {
if(!ans[i]) continue;
if(flag) printf(" ");
else flag = true;
printf("%d", i);
}
printf("\n");
}
}
HDU 2489 Minimal Ratio Tree(暴力+最小生成树)(2008 Asia Regional Beijing)的更多相关文章
- HDU 2489 Minimal Ratio Tree (dfs+Prim最小生成树)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2489 Problem Description For a tree, which nodes and ...
- HDU 2489 Minimal Ratio Tree (DFS枚举+最小生成树Prim)
Minimal Ratio Tree Time Limit : 2000/1000ms (Java/Other) Memory Limit : 32768/32768K (Java/Other) ...
- HDU 2489 Minimal Ratio Tree 最小生成树+DFS
Minimal Ratio Tree Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Other ...
- HDU 2489 Minimal Ratio Tree(prim+DFS)
Minimal Ratio Tree Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Other ...
- HDU 2489 Minimal Ratio Tree(dfs枚举+最小生成树)
想到枚举m个点,然后求最小生成树,ratio即为最小生成树的边权/总的点权.但是怎么枚举这m个点,实在不会.网上查了一下大牛们的解法,用dfs枚举,没想到dfs还有这么个作用. 参考链接:http:/ ...
- hdu 2489 Minimal Ratio Tree
http://acm.hdu.edu.cn/showproblem.php?pid=2489 这道题就是n个点中选择m个点形成一个生成树使得生成树的ratio最小.暴力枚举+最小生成树. #inclu ...
- HDU 2487 Ugly Windows(暴力)(2008 Asia Regional Beijing)
Description Sheryl works for a software company in the country of Brada. Her job is to develop a Win ...
- HDU 2494/POJ 3930 Elevator(模拟)(2008 Asia Regional Beijing)
Description Too worrying about the house price bubble, poor Mike sold his house and rent an apartmen ...
- HDU 2492 Ping pong(数学+树状数组)(2008 Asia Regional Beijing)
Description N(3<=N<=20000) ping pong players live along a west-east street(consider the street ...
随机推荐
- SQLMAP注入常见用法
1.检查注入点 sqlmap -u http://www.com.tw/star_photo.php?artist_id=11 2.列数据库信息当前用户和数据库 sqlmap -u http://ww ...
- C++常用的系统函数
数学<math.h>: 1 三角函数 double sin (double); double cos (double); double tan (double); 2 反三角函数 doub ...
- BZOJ2037: [Sdoi2008]Sue的小球(区间DP)
Time Limit: 10 Sec Memory Limit: 64 MBSubmit: 869 Solved: 483[Submit][Status][Discuss] Description ...
- linux系统基础之---系统基本安全(基于centos7.4 1708)
- 用JQ实现的一个简单轮播
<!DOCTYPE html><html><head> <meta charset="utf-8"> <title>lb ...
- js 中~~是什么意思?
其实是一种利用符号进行的类型转换,转换成数字类型 ~~true == 1~~false == 0~~"" == 0~~[] == 0 ~~undefined ==0~~!undef ...
- vue的监听键盘事件的快捷方法
在我们的项目经常需要监听一些键盘事件来触发程序的执行,而Vue中允许在监听的时候添加关键修饰符: <input v-on:keyup.13="submit"> 对于一些 ...
- opencv移植(二)
原文:https://blog.csdn.net/Guet_Kite/article/details/78667175?utm_source=copy 版权声明:本文为博主原创文章,转载请附上博文链接 ...
- gem install tiny_tds失败
解决: brew install freetds gem install tiny_tds -v '2.1.0'
- Python之函数装饰器
在实际中,我们可能需要在不改变函数源代码和调用方式的情况下,为函数添加一些新的附加功能,能够实现这种功能的函数我们将其称之为装饰器.装饰器本质上其实还是是一个函数,用来装饰其它函数,为函数添加一些附加 ...