发现自己学了几天splay已经傻了

其实还是一个比较裸的dp的,但是还是想了一小会,还sb的wa了几次

首先这道题的状态应该很好看出,我们用\(f[i][j]\)表示在前\(i\)个数中(即\(1-i\)中)逆序对个数为\(j\)的方案数

于是我们考虑怎么转移,我们知道逆序对这个东西并不看重实际的大小,只用关心相对大小就行了

于是\(f[i][j]\)的状态肯定来自于\(f[i-1]\),这就相当于我们向序列里加入了\(i\)

由于\(i\)比之前所有数都大,于是它在几个数的前面就会产生多少个逆序对

于是我们的方程就很好写了

\(f[i][j]=\sum_{p=0}^{j}f[i-1][p]\)

同时前\(i-1\)新产生的逆序对的数量也就是\(i-1\)了

于是对于上面那个方程我们还要有一个限制条件

那就是\(p+i-1>=j\)

于是这份暴力代码就可以写出来了

#include<iostream>
#include<cstdio>
#include<cstring>
#define re register
#define maxn 1001
using namespace std;
const int mod=10000;
int f[maxn][maxn];
int n,k;
inline int read()
{
char c=getchar();
int x=0;
while(c<'0'||c>'9') c=getchar();
while(c>='0'&&c<='9')
x=(x<<3)+(x<<1)+c-48,c=getchar();
return x;
}
int main()
{
n=read();
k=read();
for(re int i=1;i<=n;i++) f[i][0]=1;
for(re int i=1;i<=n;i++)
for(re int j=1;j<=k;j++)
for(re int p=0;p<=j;p++)
if(i-1+p>=j) f[i][j]=(f[i-1][p]+f[i][j])%mod;
cout<<f[n][k]<<endl;
return 0;
}

但这份代码的复杂度显然是\(O(nk^2)\)的,于是就只有70

我们再去看看我们的方程,那是一个和式,下标还是连续的

有没有想到什么快速求和的方法

那自然是前缀和

由于我们更新\(i\)只会用到\(i-1\)

于是我们开一个滚动的前缀和数组就可以了

于是这就是代码了

#include<iostream>
#include<cstdio>
#include<cstring>
#define re register
#define maxn 1001
using namespace std;
const int mod=10000;
int f[maxn][maxn];
int n,k;
int p[2][maxn];
inline int read()
{
char c=getchar();
int x=0;
while(c<'0'||c>'9') c=getchar();
while(c>='0'&&c<='9')
x=(x<<3)+(x<<1)+c-48,c=getchar();
return x;
}
int main()
{
n=read();
k=read();
for(re int i=1;i<=n;i++) f[i][0]=1;
p[0][0]=p[1][0]=1;
int now=0;
for(re int i=1;i<=k;i++)
p[now][i]=1;
for(re int i=1;i<=n;i++)
{
for(re int t=1;t<=k;t++)
p[now^1][t]=0;
for(re int j=1;j<=k;j++)
{
if(j-i+1<=0) f[i][j]=(p[now][j]+mod)%mod;
else f[i][j]=(p[now][j]-p[now][j-i]+mod)%mod;
p[now^1][j]=(f[i][j]+p[now^1][j-1])%mod;
}
now^=1;
}
cout<<f[n][k]<<endl;
return 0;
}

前缀和优化dp的思想还是很重要的,以后看到这类的方程一定要往前缀和上想

【[HAOI2009]逆序对数列】的更多相关文章

  1. bzoj2431:[HAOI2009]逆序对数列

    单组数据比51nod的那道题还弱...而且连优化都不用了.. #include<cstdio> #include<cstring> #include<cctype> ...

  2. BZOJ 2431: [HAOI2009]逆序对数列( dp )

    dp(i,j)表示1~i的全部排列中逆序对数为j的个数. 从1~i-1的全部排列中加入i, 那么可以产生的逆序对数为0~i-1, 所以 dp(i,j) = Σ dp(i-1,k) (j-i+1 ≤ k ...

  3. 2431: [HAOI2009]逆序对数列

    2431: [HAOI2009]逆序对数列 Time Limit: 5 Sec  Memory Limit: 128 MBSubmit: 954  Solved: 548[Submit][Status ...

  4. P2513 [HAOI2009]逆序对数列

    P2513 [HAOI2009]逆序对数列 题目描述 对于一个数列{ai},如果有iaj,那么我们称ai与aj为一对逆序对数.若对于任意一个由1~n自然数组成的数列,可以很容易求出有多少个逆序对数.那 ...

  5. bzoj千题计划153:bzoj2431: [HAOI2009]逆序对数列

    http://www.lydsy.com/JudgeOnline/problem.php?id=2431 dp[i][j] 表示i的排列,有j个逆序对的方案数 加入i+1,此时i+1是排列中最大的数, ...

  6. BZOJ2431 HAOI2009 逆序对数列 【DP】*

    BZOJ2431 HAOI2009 逆序对数列 Description 对于一个数列ai{a_i}ai​,如果有i<j且ai>aja_i>a_jai​>aj​,那么我们称aia ...

  7. 洛谷P2513 [HAOI2009]逆序对数列

    P2513 [HAOI2009]逆序对数列 题目描述 对于一个数列{ai},如果有i<j且ai>aj,那么我们称ai与aj为一对逆序对数.若对于任意一个由1~n自然数组成的数列,可以很容易 ...

  8. bzoj2431: [HAOI2009]逆序对数列(前缀和优化dp)

    2431: [HAOI2009]逆序对数列 Time Limit: 5 Sec  Memory Limit: 128 MBSubmit: 2312  Solved: 1330[Submit][Stat ...

  9. Bzoj 2431 HAOI2009 逆序对数列

    Description 对于一个数列{ai},如果有i**<**j且ai>aj,那么我们称ai与aj为一对逆序对数.若对于任意一个由1~n自然数组成的数列,可以很容易求出有多少个逆序对数. ...

  10. [HAOI2009]逆序对数列

    题目描述 对于一个数列{ai},如果有i<j且ai>aj,那么我们称ai与aj为一对逆序对数.若对于任意一个由1~n自然数组成的数列,可以很容易求出有多少个逆序对数.那么逆序对数为k的这样 ...

随机推荐

  1. nodejs封装mssql

    对mssql操作Sqlserver数据库的基本封装: 记录一下: /** * Created by chaozhou on 2015/9/18. */ var mssql = require('mss ...

  2. IE11 F12 开发人员工具 查看 Cookie

    参考网址:Using the F12 developer tools in IE11 Step1 : IE11 => F12 打开 开发人员工具 Step2:开发人员工具 => 网络F5 ...

  3. spring的事务传播行为

    1.PROPAGATION_REQUIRED:如果当前没有事务,就创建一个新事务,如果当前存在事务,就加入该事务,该设置是最常用的设置. 比如说,ServiceB.methodB的事务级别定义为PRO ...

  4. About custom Theme and Style

    For android system, of course you can custom your own style and theme, but you can't break compatibi ...

  5. python 需求文件requirements.txt的创建及使用

    在虚拟环境中使用pip生成: (venv) $ pip freeze >requirements.txt 当需要创建这个虚拟环境的完全副本,可以创建一个新的虚拟环境,并在其上运行以下命令: (v ...

  6. Python中元组和列表

    一.list列表的操作包括以下函数: 列表操作包括以下函数: 1.cmp(list1,list2) :比较两个列表的元素 2.len(list) :列表元素个数 3.max(list) :返回列表元素 ...

  7. PHP 八种基本的数据类型

    四种标量类型: boolean (布尔型) integer (整型) float (浮点型, 也称作 double) string (字符串) 两种复合类型: array (数组) object (对 ...

  8. 第3章 css属性color的RGBA值

    颜色之RGBA RGB是一种色彩标准,是由红(R).绿(G).蓝(B)的变化以及相互叠加来得到各式各样的颜色.RGBA是在RGB的基础上增加了控制alpha透明度的参数. 语法: color:rgba ...

  9. VC6.0开发OCX按钮控件

    原文:http://www.cnblogs.com/joinclear/archive/2013/05/21/3091934.html 0前言 1.OCX是典型的ActiveX控件,常见的OCX控件有 ...

  10. 阿里云安装jdk报错gzip: stdin: unexpected end of file

    在阿里云上面安装jdk时候报了这个问题,如下图所示 然后看了下jdk应该是有150多M的,但是阿里云上面的只有1M多,删除 重新下载... tar zxvf jdk 好了