我好弱啊。。这题调了2天QwQ

  题目大意:给定一个长度为n(n<=40000)的序列,m(m<=50000)次询问l~r之间出现次数最多的数。(区间众数)

  这题如果用主席树就可以不用处理一堆前缀和。。蓝鹅我不会~T_T~

  把序列n分成sqrt(n)块,先把所有数离散化,预处理出poi[i][j]表示第i块到第j块的众数(即出现次数最多的数)。

  询问有两种情况:

  第一种情况是l~r在某个块中,那么直接扫一遍求出众数,效率O(sqrt(n))。

  第二种情况是l~r在多个块中,l在x块,r在y块,那么我们可以把它分为三部分:①l~x块最后一个数②x+1块~y-1块③y块第一个数~r。

  因为我们求出了poi数组,所以我们可以知道第二部分的众数,显然我们只要统计一下第一部分、第三部分每个数出现的次数,将它们和第二部分的众数出现的次数进行比较,出现次数最多的数就是l~r的众数。

  而第一部分、第三部分数的个数不超过2*sqrtn(n)个,所以扫一遍第一部分、第三部分的数,效率O(sqrt(n)),问题就是怎么O(1)求出第一部分、第三部分的每个数在l~r出现的次数了。如果是O(1),那么可以想到的就是前缀和,于是我们再预处理出qzh[i][a]表示前i块中a出现的次数,qzh2[i][j][a]表示第i块前j个数中a出现的次数。那么设第一部分某个数为a,l在x块,r在y块,它在l~r中出现的次数就是:

  qzh[y-1][a]-qzh[x-1][a]-qzh2[x][(l-1)%sqrtn==0?sqrtn:(l-1)%sqrtn][a]

  +qzh2[x][(r-1)%sqrtn+1==sqrtn?0:(r-1)%sqrtn+1][a]

  【写的好丑哇QAAAAQ

  第三部分同理,然后和第二部分预处理出来的众数在l~r出现的次数(求法同理)比较找出最大的就行了。

  预处理O(nsqrt(n)),询问O(qsqrt(n)),总的时间复杂度O((n+q)sqrt(n))。

代码如下:

#include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<map>
using namespace std;
map<int,int>M[];
struct zs{int num,pos;}b[];
int n,m,l,r,cnt,ans,poi[][],a[],pos[],sum[],qzh[][],qzh2[][][],num[],ppos[][];
bool v[];
bool cmp(zs a,zs b){return a.num<b.num;}
int main()
{
scanf("%d %d",&n,&m);
int sqrtn=(int)ceil(sqrt(n));
for(int i=;i<=n;i++)scanf("%d",&a[i]),b[i].num=a[i],b[i].pos=i;
sort(b+,b++n,cmp);
for(int i=;i<=n;i++)
{
if(b[i].num!=b[i-].num)cnt++;
pos[b[i].pos]=cnt;
}
for(int i=;i<=sqrtn;i++)
for(int j=;j<=sqrtn;j++)
{
if((i-)*sqrtn+j<=n)if(M[i].find(a[(i-)*sqrtn+j])==M[i].end())
M[i][a[(i-)*sqrtn+j]]=++num[i];
ppos[i][pos[(i-)*sqrtn+j]]=M[i][a[(i-)*sqrtn+j]];
}
for(int i=;i<=n;i++)qzh[((i-)/sqrtn)+][pos[i]]++;
for(int i=;i<=n;i++)for(int j=;j<=sqrtn;j++)qzh[j][i]+=qzh[j-][i];
for(int i=;i<=sqrtn;i++)for(int j=;j<=sqrtn;j++)if((i-)*sqrtn+j<=n)qzh2[i][j][ppos[i][pos[(i-)*sqrtn+j]]]++;
for(int i=;i<=sqrtn;i++)
{
for(int k=;k<=sqrtn;k++)if((i-)*sqrtn+k<=n)v[pos[(i-)*sqrtn+k]]=;
for(int k=;k<=sqrtn;k++)
if((i-)*sqrtn+k<=n)
if(!v[pos[(i-)*sqrtn+k]])
{
for(int j=;j<=sqrtn;j++)
if((i-)*sqrtn+j<=n)qzh2[i][j][ppos[i][pos[(i-)*sqrtn+k]]]+=qzh2[i][j-][ppos[i][pos[(i-)*sqrtn+k]]];
v[pos[(i-)*sqrtn+k]]=;
}
}
for(int i=;i<=sqrtn;i++)
{
memset(sum,,sizeof(sum));
int max=,maxi=;
for(int j=i;j<=sqrtn;j++)
{
for(int k=;k<=sqrtn;k++)
{
int x=(j-)*sqrtn+k;
if(x>n)break;
if(++sum[pos[x]]>max||((sum[pos[x]]==max)&&(pos[x]<pos[maxi])))max=sum[pos[x]],maxi=x;
}
poi[i][j]=maxi;
}
}
for(int i=;i<=m;i++)
{
scanf("%d %d",&l,&r);
l=(l+ans-)%n+;r=(r+ans-)%n+;if(r<l)swap(l,r);
if((int)ceil(r/sqrtn)==(int)ceil(l/sqrtn))
{
int maxx=,maxi=;
memset(sum,,sizeof(sum));
for(int j=l;j<=r;j++)
if(++sum[pos[j]]>maxx||((sum[pos[j]]==maxx)&&(pos[j]<pos[maxi])))maxx=sum[pos[j]],maxi=j;
ans=a[maxi];
printf("%d\n",a[maxi]);
}else
{
int ll=-,rr=;
for(int j=;j<=sqrtn;j++)
{
if(j*sqrtn+>=l&&(ll==-))ll=j*sqrtn;
if(j*sqrtn<=r)rr=j*sqrtn;
}
int y=poi[ll/sqrtn+][rr/sqrtn];
for(int j=l;j<=ll;j++)
{
int lll=y;
int x=qzh[rr/sqrtn][pos[j]]-qzh[max(ll/sqrtn-,)][pos[j]]-qzh2[ll/sqrtn][(l-)%sqrtn==?sqrtn:(l-)%sqrtn][ppos[ll/sqrtn][pos[j]]]+qzh2[rr/sqrtn+][(r-)%sqrtn+==sqrtn?:(r-)%sqrtn+][ppos[rr/sqrtn+][pos[j]]];
y=qzh[rr/sqrtn][pos[lll]]-qzh[max(ll/sqrtn-,)][pos[lll]]-qzh2[ll/sqrtn][(l-)%sqrtn==?sqrtn:(l-)%sqrtn][ppos[ll/sqrtn][pos[lll]]]+qzh2[rr/sqrtn+][(r-)%sqrtn+==sqrtn?:(r-)%sqrtn+][ppos[rr/sqrtn+][pos[lll]]];
if(x>y||((x==y)&&pos[j]<pos[lll]))y=j;else y=lll;
}
for(int j=rr+;j<=r;j++)
{
int lll=y;
int x=qzh[rr/sqrtn][pos[j]]-qzh[max(ll/sqrtn-,)][pos[j]]-qzh2[ll/sqrtn][(l-)%sqrtn==?sqrtn:(l-)%sqrtn][ppos[ll/sqrtn][pos[j]]]+qzh2[rr/sqrtn+][(r-)%sqrtn+==sqrtn?:(r-)%sqrtn+][ppos[rr/sqrtn+][pos[j]]];
y=qzh[rr/sqrtn][pos[lll]]-qzh[max(ll/sqrtn-,)][pos[lll]]-qzh2[ll/sqrtn][(l-)%sqrtn==?sqrtn:(l-)%sqrtn][ppos[ll/sqrtn][pos[lll]]]+qzh2[rr/sqrtn+][(r-)%sqrtn+==sqrtn?:(r-)%sqrtn+][ppos[rr/sqrtn+][pos[lll]]];
if(x>y||((x==y)&&pos[j]<pos[lll]))y=j;else y=lll;
}
printf("%d\n",a[y]);ans=a[y];
}
}
}

bzoj2724: [Violet 6]蒲公英(离散化+分块)的更多相关文章

  1. bzoj2724: [Violet 6]蒲公英(分块)

    传送门 md调了一个晚上最后发现竟然是空间开小了……明明算出来够的…… 讲真其实我以前不太瞧得起分块,觉得这种基于暴力的数据结构一点美感都没有.然而今天做了这道分块的题才发现分块的暴力之美(如果我空间 ...

  2. [BZOJ2724][Violet 6]蒲公英

    [BZOJ2724][Violet 6]蒲公英 试题描述 输入 修正一下 l = (l_0 + x - 1) mod n + 1, r = (r_0 + x - 1) mod n + 1 输出 输入示 ...

  3. BZOJ_2724_[Violet 6]蒲公英_分块

    BZOJ_2724_[Violet 6]蒲公英_分块 Description Input 修正一下 l = (l_0 + x - 1) mod n + 1, r = (r_0 + x - 1) mod ...

  4. BZOJ2724 [Violet 6]蒲公英 分块

    原文链接https://www.cnblogs.com/zhouzhendong/p/BZOJ2724.html 题目传送门 - BZOJ2724 题意 求区间最小众数,强制在线. $n$ 个数,$m ...

  5. 【分块】bzoj2724 [Violet 6]蒲公英

    分块,离散化,预处理出: ①前i块中x出现的次数(差分): ②第i块到第j块中的众数是谁,出现了多少次. 询问的时候,对于整块的部分直接获得答案:对于零散的部分,暴力统计每个数出现的次数,加上差分的结 ...

  6. bzoj2724: [Violet 6]蒲公英 分块 区间众数 论algorithm与vector的正确打开方式

    这个,要处理各个数的话得先离散,我用的桶. 我们先把每个块里的和每个块区间的众数找出来,那么在查询的时候,可能成为[l,r]区间的众数的数只有中间区间的众数和两边的数. 证明:若不是这里的数连区间的众 ...

  7. BZOJ.2724.[Violet 6]蒲公英(静态分块)

    题目链接 区间众数 强制在线 考虑什么样的数会成为众数 如果一个区间S1的众数为x,那么S1与新区间S2的并的众数只会是x或S2中的数 所以我们可以分块先预处理f[i][j]表示第i到第j块的众数 对 ...

  8. [BZOJ 2724] [Violet 6] 蒲公英 【分块】

    题目链接:BZOJ - 2724 题目分析 这道题和 BZOJ-2821 作诗 那道题几乎是一样的,就是直接分块,每块大小 sqrt(n) ,然后将数字按照数值为第一关键字,位置为第二关键字排序,方便 ...

  9. 【BZOJ2724】[Violet 6]蒲公英 分块+二分

    [BZOJ2724][Violet 6]蒲公英 Description Input 修正一下 l = (l_0 + x - 1) mod n + 1, r = (r_0 + x - 1) mod n ...

随机推荐

  1. 腾讯云ubuntu安装使用MySQL

    安装步骤 ubuntu@VM---ubuntu:~$ sudo apt-get install mysql-server (密码: root/root) ubuntu@VM---ubuntu:~$ s ...

  2. java学习笔记-9.违例差错控制

      1.违例规范是告诉程序员这个方法可能抛出哪些类型的异常.他的格式在方法声明中,位于自变量(参数)列表的后面,如void f() throws tooBig, tooSmall, divZero { ...

  3. 剑指offer-二叉树中和为某一值的路径24

    题目描述 输入一颗二叉树的跟节点和一个整数,打印出二叉树中结点值的和为输入整数的所有路径.路径定义为从树的根结点开始往下一直到叶结点所经过的结点形成一条路径.(注意: 在返回值的list中,数组长度大 ...

  4. VBS简明教程

    VBS简明教程   一.输出 VBS的输出使用函数Msgbox调用对话框进行输出. Msgbox(message) Message为要输出的信息 二.输入 VBS的输入,调用函数Inputbox()进 ...

  5. 概要梳理kafka知识点

    主要是梳理一下kafka学习中的一些注意点,按照消息的流动方向进行梳理.详细的kafka介绍推荐看骑着龙的羊的系列博客,具体的某一块的知识点,可以参考我给出的一些参考文章. 1. kafka在系统中的 ...

  6. [C++] Class (part 2)

    Members that are const or reference must be initialized. Similary, members that are of a class type ...

  7. 单源最短路——dijkstra算法

    Dijkstra算法 1.定义概览 Dijkstra(迪杰斯特拉)算法是典型的单源最短路径算法,用于计算一个节点到其他所有节点的最短路径.主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止. 问 ...

  8. mysql 只返回一条数据

    问题描述: 需要得到时间最近的一条记录,但是按照时间字段排完序之后,得到的是全部. 解决办法: order by createtime desc //降序:asc:升序 LIMIT 1

  9. WIN8/8.1/10进入BIOS方法图解

    1.首先点击桌面左下角的"开始". 2.然后点击电源. 3.然后按住shift,同时点击"重启".于是进入这个画面: 4.然后点击"疑难解答" ...

  10. CentOs7.3 搭建 Redis-4.0.1 Cluster 集群服务

    环境 VMware版本号:12.0.0 CentOS版本:CentOS 7.3.1611 三台虚拟机(IP):192.168.252.101,192.168.102..102,192.168.252. ...