链接

对于gcd(i,j)的位置来说,对答案的贡献是2*(gcd(i,j)-1)+1,所以答案ans

ans=Σ(1<=i<=n)(1<=j<=m)2*(gcd(i,j)-1)+1

ans=2*Σ(1<=i<=n)(1<=j<=m)gcd(i,j)-n*m

前者可以通过莫比乌斯反演来计算,便很容易得出答案

//#pragma comment(linker, "/stack:200000000")
//#pragma GCC optimize("Ofast,no-stack-protector")
//#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
//#pragma GCC optimize("unroll-loops")
#include<bits/stdc++.h>
#define fi first
#define se second
#define mp make_pair
#define pb push_back
#define pi acos(-1.0)
#define ll long long
#define mod 1000000007
#define C 0.5772156649
#define ls l,m,rt<<1
#define rs m+1,r,rt<<1|1
#define pil pair<int,ll>
#define pii pair<int,int>
#define ull unsigned long long
#define base 1000000000000000000
#define fio ios::sync_with_stdio(false);cin.tie(0) using namespace std; const double g=10.0,eps=1e-;
const int N=+,maxn=+,inf=0x3f3f3f3f; int mu[N],prime[N],sum[N];
bool mark[N];
int num[N];
void init()
{
mu[]=;
int cnt=;
for(int i=;i<N;i++)
{
if(!mark[i])prime[++cnt]=i,mu[i]=-,num[i]=;
for(int j=;j<=cnt;j++)
{
int t=i*prime[j];
if(t>N)break;
mark[t]=;
num[t]=num[i]+;
if(i%prime[j]==){mu[t]=;break;}
else mu[t]=-mu[i];
}
}
for(int i=;i<N;i++)sum[i]=sum[i-]+mu[i];
}
int main()
{
init();
int n,m;
scanf("%d%d",&n,&m);
ll ans=;
for(int j=;j<=max(n,m);j++)
{
ll te=;
int ten=n/j,tem=m/j;
for(int i=,last;i<=min(ten,tem);i=last+)
{
last=min(ten/(ten/i),tem/(tem/i));
te+=(ll)(sum[last]-sum[i-])*(ten/i)*(tem/i);
}
// printf("%lld\n",te);
ans+=te*j;
}
printf("%lld\n",*ans-(ll)n*m);
return ;
}
/******************** ********************/

HYSBZ - 2005 莫比乌斯反演的更多相关文章

  1. HYSBZ - 2301 莫比乌斯反演

    链接 题解:直接用公式算,用容斥来减掉重复计算的部分 但是我犯了一个非常sb的错误,直接把abcd除k了,这样算a-1的时候就错了,然后举的例子刚好还没问题= = ,结果wa了好几发 //#pragm ...

  2. HYSBZ - 2818莫比乌斯反演

    链接 题意很简洁不说了 题解:一开始我想直接暴力,复杂度是O(log(1e7)*sqrt(1e7))算出来是2e9,可能会复杂度爆炸,但是我看时限是10s,直接大力莽了一发暴力,没想到就过了= = 就 ...

  3. BZOJ 2005 [Noi2010]能量采集 (数学+容斥 或 莫比乌斯反演)

    2005: [Noi2010]能量采集 Time Limit: 10 Sec  Memory Limit: 552 MBSubmit: 4493  Solved: 2695[Submit][Statu ...

  4. bzoj 2005 & 洛谷 P1447 [ Noi 2010 ] 能量采集 —— 容斥 / 莫比乌斯反演

    题目:bzoj 2005 https://www.lydsy.com/JudgeOnline/problem.php?id=2005   洛谷 P1447 https://www.luogu.org/ ...

  5. HYSBZ - 2818 Gcd (莫比乌斯反演)

    莫比乌斯反演的入门题,设 \(F(x): gcd(i,j)\%x=0\) 的对数,\(f(x): gcd(i,j)=x\)的对数. 易知\[F(p) = \lfloor \frac{n}{p} \rf ...

  6. ACM学习历程—HYSBZ 2818 Gcd(欧拉函数 || 莫比乌斯反演)

    Description 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. Input 一个整数N Output 如题 Sample Input 4 Sam ...

  7. bzoj 2005: [Noi2010]能量采集【莫比乌斯反演】

    注意到k=gcd(x,y)-1,所以答案是 \[ 2*(\sum_{i=1}^{n}\sum_{i=1}^{m}gcd(i,j))-n*m \] 去掉前面的乘和后面的减,用莫比乌斯反演来推,设n< ...

  8. Gcd HYSBZ - 2818 (莫比乌斯反演)

    Gcd \[ Time Limit: 10000 ms\quad Memory Limit: 262144 kB \] 题意 求 \(gcd\left(x,y\right) = p\) 的对数,其中\ ...

  9. hdu1695 GCD(莫比乌斯反演)

    题意:求(1,b)区间和(1,d)区间里面gcd(x, y) = k的数的对数(1<=x<=b , 1<= y <= d). 知识点: 莫比乌斯反演/*12*/ 线性筛求莫比乌 ...

随机推荐

  1. 解决 free(): invalid pointer: 0x00000000019ff700 运行时报错(caffe)(libtool使用)

    编译成功,运行时报错: 在使用 pytorch or tensorflow or caffe 时,都可能存在这个问题: *** Error in `xxx': free(): invalid poin ...

  2. shell脚本读取文件+读取命令行参数+读取标准输入+变量赋值+输出到文件

    读取url_list文件批量下载网页 url_list http://www.tianyancha.com/company/2412078287 http://www.4399.com/special ...

  3. Python(进程池与协程)

    1.进程池与线程池: 为什么要用“池”:池子使用来限制并发的任务数目,限制我们的计算机在一个自己可承受的范围内去并发地执行任务 池子内什么时候装进程:并发的任务属于计算密集型 池子内什么时候装线程:并 ...

  4. SQL竖表转换成横表统计

    #创建表user_score create table user_score ( name varchar(20), subjects varchar(20), score int ); insert ...

  5. spawn 和 exec 的区别(转载)

    众所周知,Node.js在child_process模块中提供了spawn和exec这两个方法,用来开启子进程执行指定程序.这两个方法虽然目的一样,但是既然Node.js为我们提供了两个方法,那它们之 ...

  6. 浅谈HTML文档模式

    不知道爱多想的你有没有在编写HTML代码时思考过 <!DOCTYPE html> 或是这一长串看都看不懂的 <!DOCTYPE HTML PUBLIC "-//W3C//D ...

  7. pandas(九)数据转换

    移除重复数据 dataframe中常常会出现重复行,DataFrame对象的duplicated方法返回一个布尔型的Series对象,可以表示各行是否是重复行.还有一个drop_duplicates方 ...

  8. day3-python的函数及参数

    函数式编程最重要的是增强代码的重用性和可读性 1 2 3 4 def 函数名(参数):     ...     函数体     ... 函数的定义主要有如下要点: def:表示函数的关键字 函数名:函 ...

  9. GIL解释器,协程,gevent模块

    GIL解释器锁 在Cpython解释器中,同一个进程下开启的多线程,同一时刻只能有一个线程执行,无法利用多核优势 首先需要明确的一点是GIL并不是Python的特性,它是在实现Python解析器(CP ...

  10. oracle 创建视图、修改视图、删除视图、利用视图操作基本表

    转:http://blog.sina.com.cn/s/blog_6b58d2fa0100rgvw.html 1.使用create or replace view命令创建视图 语法格式: create ...