链接:

https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=4513

题意:

有高为1, 2, 3,…, n的杆子各一根排成一行。从左边能看到L根,从右边能看到R根,求有多少种可能。

分析:

设d(i,j,k)表示让高度为1~i的杆子排成一行,从左边能看到j根,从右边能看到k根的方案数(设i≥2)。
按照从大到小的顺序安排各个杆子。假设已经安排完高度为2~i的杆子,
那么高度为1的杆子不管放哪里都不会挡住任何一根杆子。有如下3种情况。
情况1:插到最左边,则从左边能看到它,从右边看不见(因为i≥2)。
情况2:如果插到最右边,则从右边能看到它,从左边看不见。
情况3(有i-2个插入位置):插到中间,则不管从左边还是右边都看不见它。
在第一种情况下,高度为2~i的那些杆子必须满足:从左边能看到j-1根,从右边能看到k根,
因为只有这样,加上高度为1的杆子之后才是“从左边能看到j根,从右边能看到k根”。
虽然状态d(i,j,k)表示的是“让高度为1~i的杆子……”,而现在需要把高度为2~i+1的杆子排成一行,
但是不难发现:其实杆子的具体高度不会影响到结果,只要有i根高度各不相同的杆子,
从左从右看分别能看到j根和k根,方案数就是d(i,j,k)。换句话说,情况1对应的方案数是d(i-1,j-1,k)。
类似地,情况2对应的方案数是d(i-1,j,k-1),而情况3对应的方案数是d(i-1,j,k)*(i-2)。
这样,就得到了如下递推式:d(i,j,k) = d(i-1,j-1,k) + d(i-1,j,k-1) + d(i-1,j,k)*(i-2)。

代码:

 import java.io.*;
import java.util.*; public class Main {
static final int UP = 20 + 1;
static long d[][][] = new long[UP][UP][UP]; static void constant() {
d[1][1][1] = 1;
for(int n = 2; n < UP; n++) {
for(int L = 1; L <= n; L++) {
for(int R = 1; R <= n; R++) {
d[n][L][R] += d[n-1][L-1][R];
d[n][L][R] += d[n-1][L][R-1];
d[n][L][R] += d[n-1][L][R] * (n-2);
}
}
}
} public static void main(String args[]) {
Scanner cin = new Scanner(new BufferedInputStream(System.in));
constant(); int T = cin.nextInt();
while(T --> 0) {
int n = cin.nextInt();
int L = cin.nextInt();
int R = cin.nextInt();
System.out.println(d[n][L][R]);
}
cin.close();
}
}

UVa 1638 - Pole Arrangement(dp)的更多相关文章

  1. UVA 1638 Pole Arrangement (dp)

    题意:有n个长度为1到n的柱子排列在一起,从左边看有l根从右边看有r根,问你所以排列中满足这种情况的方案数 题解:就是一个dp问题,关键是下标放什么,值代表什么 使用三维dp,dp[i][j][k]= ...

  2. UVa 1638 Pole Arrangement (递推或DP)

    题意:有高为1,2,3...n的杆子各一根排成一行,从左边能看到L根,从右边能看到R根,求杆子的排列有多少种可能. 析:设d(i, j, k)表示高度为1-i的杆子排成一行,从左边看到j根,从右边看到 ...

  3. uva 116 Unidirectional TSP (DP)

    uva 116 Unidirectional TSP Background Problems that require minimum paths through some domain appear ...

  4. UVa 12186 Another Crisis (DP)

    题意:有一个老板和n个员工,除了老板每个员工都有唯一的上司,老板编号为0,员工们为1-n,工人(没有下属的员工),要交一份请愿书, 但是不能跨级,当一个不是工人的员工接受到直系下属不少于T%的签字时, ...

  5. UVA 674 Coin Change(dp)

    UVA 674  Coin Change  解题报告 题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?cid=87730#problem/ ...

  6. UVA 10163 - Storage Keepers(dp)

    本文出自   http://blog.csdn.net/shuangde800 题目链接: 点击打开链接 题意 有n个仓库,让m个人来看管.一个仓库只能由一个人来看管,一个人可以看管多个仓库. 每个人 ...

  7. UVA 11137 Ingenuous Cubrency(dp)

    Ingenuous Cubrency 又是dp问题,我又想了2 30分钟,一点思路也没有,最后又是看的题解,哎,为什么我做dp的题这么烂啊! [题目链接]Ingenuous Cubrency [题目类 ...

  8. UVA 674 Coin Change (DP)

    Suppose there are 5 types of coins: 50-cent, 25-cent, 10-cent, 5-cent, and 1-cent. We want to make c ...

  9. uva 1629切蛋糕(dp)

    有一个n行m列的网格蛋糕,上面有一些樱桃.求使得每块蛋糕上都有一个樱桃的分割最小长度 思路:dp. #include<cstdio> #include<cstring> #in ...

随机推荐

  1. [PY3]——内置数据结构(4)——字符串格式化(format)

    字符串格式化是拼接字符串的一种手段 join和+拼接字符串的方法,难以控制格式 printf style 字符串格式化 这种方法是从c语言继承过来的 # 待格式化的字符串:一个字符串存在占位符 In ...

  2. 如何高效的算出2x8的值

    原文出自:https://blog.csdn.net/seesun2012 位移算法,如何高效的算出2*8的值,为什么8<<1,4<<2,2<<3,1<< ...

  3. sp里拼接html table标签

    DECLARE @xml NVARCHAR(MAX) --generate mail body SET @xml = CAST(( SELECT --[ID] 'td','' -- ,[Status] ...

  4. java 线程池(2)

    ScheduledThreadPoolExecutor概述 ScheduledThreadPoolExecutor下文简称 STPE. public class ScheduledThreadPool ...

  5. react-native学习之入门app

    1.项目初始化: react-native init MyProject 2.启动项目: cd MyProject react-native start 新开cmd窗口: react-native r ...

  6. OOP 第一章作业总结

    程序设计结构分析 类图分析 第一次作业 由于第一次作业完成的功能比较简单,而且出于对面向对象设计理念不熟悉(其实现在也不是很熟悉,逃),整个程序设计的非常简单.通过类图(见下)可以看出,程序只有两个类 ...

  7. 对Mybatis的初步认识

    1.认识Mybatis MyBatis 是支持普通 SQL 查询,存储过程和高级映射的优秀持久层框架. MyBatis 消除了几乎所有的 JDBC 代码和参数的手工设置以及对结果集的检索. MyBat ...

  8. java多线程之ReentrantLock

    前言 相信学过java的人都知道 synchronized 这个关键词,也知道它用于控制多线程对并发资源的安全访问,兴许,你还用过Lock相关的功能,但你可能从来没有想过java中的锁底层的机制是怎么 ...

  9. js两个字符串明明一样却判断显示不相等

    一.问题 两个字符串看起来一样.类型一样,判断str1==str2时返回false: 二.原因 字符串可能含有其他特殊字符:换行符(%D).空格(%20)...一般不显示. 三.如何判断 encode ...

  10. 把getJson() 设置为同步执行

    因为业务需求,需要在获取到json 数据后,对数据进行处理. 这时候,我们需要把getJson() 的方法设置为同步 $.ajaxSettings.async = false; getJson() 方 ...