题目链接:http://poj.org/problem?id=3436


解题心得:

  • 题目真的是超级复杂,但解出来就是一个网络流,建图稍显复杂。其实提炼出来就是一个工厂n个加工机器,每个机器有一个效率w,q个材料入口,q个材料出口,每个口有三个数表示状态,1表示一定有入/出的材料,0表示没有入/出的材料,2表示可能有入的材料。如果一个机器入口全是0,代表这是起始机器,如果一个机器出口全是1,那么代表这是末尾机器。
  • 具体做法:
    • 将每个机器i拆成两点i和i+n分别代表进和出
    • 建立超级源点,连在起始机器上,流量INF。 建立超级汇点,找到末尾机器连在超级汇点上,流量INF。
    • 一个机器拆成的两个点i和i+n连上,流量就是这个点的效率w。
    • 然后暴力匹配,看一个点的所有出口是否可以完全对应一个点的入口,如果可以,匹配上,流量INF。
    • 跑Dinic,得到最大流。
  • 刚开始看到这个题没啥思路,因为关系太过于复杂,但是只要将题目中所有的关系提炼出来,就很容易建立一个网络图,要整体效率最大,那就是跑一个最大流啊,但是如果关系找漏GG。
#include <stdio.h>
#include <cstring>
#include <stdlib.h>
#include <queue>
#include <math.h>
#include <vector>
#include <climits>
using namespace std;
const int maxn = 1e4+;
const int INF = INT_MAX; int p, n, S, T, level[maxn], iter[maxn];
struct Machine {
int in[];
int out[];
int p;
}m[maxn]; struct Edge {
int to, cap, rev, flow;
Edge(int To, int Cap, int Rev, int Flow):
to(To), cap(Cap), rev(Rev), flow(Flow){}
}; vector <Edge> ve[maxn]; void add_edge(int s,int t, int cap) {//建边
ve[s].push_back(Edge(t, cap, ve[t].size(), ));
ve[t].push_back(Edge(s, , ve[s].size()-, ));
} void build_edge() {//找出口和入口的关系
for(int i=;i<=n;i++) {
for(int j=;j<=n;j++) {
if(i == j)
continue;
bool flag = false;
for(int k=;k<=p;k++) {
if(m[j].in[k] != && m[i].out[k] != m[j].in[k]) {
flag = true;
break;
}
}
if(!flag)
add_edge(i+n, j, INF);
}
add_edge(i, i+n, m[i].p);
}
} void init() {
scanf("%d%d",&p,&n);
S = , T = *n + ;
for(int i=;i<=n;i++) {//找起始机器和末尾机器
scanf("%d", &m[i].p);
bool flag = false;
for (int j = ; j <= p; j++) {
scanf("%d", &m[i].in[j]);
if (m[i].in[j] == )
flag = true;
}
if (!flag)
add_edge(S, i, INF);
flag = false;
for (int j = ; j <= p; j++) {
scanf("%d", &m[i].out[j]);
if (m[i].out[j] != )
flag = true;
}
if (!flag)
add_edge(i+n, T, INF);
}
build_edge();
} bool bfs() {
memset(level, -, sizeof(level));
level[S] = ;
queue <int> qu;
qu.push(S);
while(!qu.empty()) {
int now = qu.front(); qu.pop();
for(int i=; i<ve[now].size(); i++) {
Edge &e = ve[now][i];
if(e.cap > e.flow && level[e.to] < ) {
level[e.to] = level[now] + ;
qu.push(e.to);
}
}
}
return level[T] > ;
} int dfs(int now, int f) {
if(now == T) return f;
for(int &i=iter[now]; i<ve[now].size(); i++) {
Edge &e = ve[now][i];
if(e.cap > e.flow && level[e.to] > level[now]) {
int d = dfs(e.to, min(f, e.cap-e.flow));
if(d > ) {
e.flow += d;
ve[e.to][e.rev].flow -= d;
return d;
}
}
}
return ;
} int max_flow() {//Dinic跑最大流
int ans = ;
while(bfs()) {
int f = dfs(S, INF);
memset(iter, , sizeof(iter));
if(f > )
ans += f;
else
break;
}
return ans;
} int cnt, path[maxn][];
void Print_path(int ans) {//把路找出来
cnt = ;
for(int i=n+;i<=*n;i++) {
for(int j=;j<ve[i].size();j++) {
Edge &e = ve[i][j];
if(e.flow > && e.to <= n) {
path[cnt][] = i - n;
path[cnt][] = e.to;
path[cnt][] = e.flow;
cnt++;
}
}
}
printf("%d %d\n",ans, cnt);
for(int i=;i<cnt;i++)
printf("%d %d %d\n",path[i][], path[i][], path[i][]);
} int main() {
init();
int ans = max_flow();
Print_path(ans);
}

POJ-3436:ACM Computer Factory (Dinic最大流)的更多相关文章

  1. POJ 3436 ACM Computer Factory(最大流+路径输出)

    http://poj.org/problem?id=3436 题意: 每台计算机包含P个部件,当所有这些部件都准备齐全后,计算机就组装完成了.计算机的生产过程通过N台不同的机器来完成,每台机器用它的性 ...

  2. POJ - 3436 ACM Computer Factory(最大流)

    https://vjudge.net/problem/POJ-3436 题目描述:  正如你所知道的,ACM 竞赛中所有竞赛队伍使用的计算机必须是相同的,以保证参赛者在公平的环境下竞争.这就是所有这些 ...

  3. POJ 3436 ACM Computer Factory (网络流,最大流)

    POJ 3436 ACM Computer Factory (网络流,最大流) Description As you know, all the computers used for ACM cont ...

  4. Poj 3436 ACM Computer Factory (最大流)

    题目链接: Poj 3436 ACM Computer Factory 题目描述: n个工厂,每个工厂能把电脑s态转化为d态,每个电脑有p个部件,问整个工厂系统在每个小时内最多能加工多少台电脑? 解题 ...

  5. POJ - 3436 ACM Computer Factory 网络流

    POJ-3436:http://poj.org/problem?id=3436 题意 组配计算机,每个机器的能力为x,只能处理一定条件的计算机,能输出特定的计算机配置.进去的要求有1,进来的计算机这个 ...

  6. POJ 3436 ACM Computer Factory 最大流,拆点 难度:1

    题目 http://poj.org/problem?id=3436 题意 有一条生产线,生产的产品共有p个(p<=10)零件,生产线上共有n台(n<=50)机器,每台机器可以每小时加工Qi ...

  7. poj 3436 ACM Computer Factory 最大流+记录路径

    题目 题意: 每一个机器有一个物品最大工作数量,还有一个对什么物品进行加工,加工后的物品是什么样.给你无限多个初始都是000....的机器,你需要找出来经过这些机器操作后最多有多少成功的机器(111. ...

  8. POJ 3436 ACM Computer Factory (拆点+输出解)

    [题意]每台计算机由P个零件组成,工厂里有n台机器,每台机器针对P个零件有不同的输入输出规格,现在给出每台机器每小时的产量,问如何建立流水线(连接各机器)使得每小时生产的计算机最多. 网络流的建图真的 ...

  9. POJ 3436 ACM Computer Factory

    题意:   为了追求ACM比赛的公平性,所有用作ACM比赛的电脑性能是一样的,而ACM董事会专门有一条生产线来生产这样的电脑,随着比赛规模的越来越大,生产线的生产能力不能满足需要,所以说ACM董事会想 ...

  10. kuangbin专题专题十一 网络流 POJ 3436 ACM Computer Factory

    题目链接:https://vjudge.net/problem/POJ-3436 Sample input 1 3 4 15 0 0 0 0 1 0 10 0 0 0 0 1 1 30 0 1 2 1 ...

随机推荐

  1. python csv写入数据,消除空行

    import csv rowlist=[{'first_name': 'mark', 'last_name': 'zhao','age':21}, {'first_name': 'tony', 'la ...

  2. SAP CRM One Order跟踪和日志工具CRMD_TRACE_SET

    事务码CRMD_TRACE_SET激活跟踪模式: 在跟踪模式下运行One Order场景.运行完毕后,使用事务码CRMD_TRACE_EVAL: 双击参数,就能看到参数明细: 点Callstack也能 ...

  3. Disruptor

    高性能队列Disruptor系列2--浅析Disruptor   目录 1. Disruptor简单介绍2. 为什么Disruptor如此之快3. Disruptor结构分析 1. Disruptor ...

  4. What Is a Computer System?

    What Is a Computer System? A combination of Five or Six Elements The term computer is used to descri ...

  5. VMware12上安装CentOS无法上网问题

    进入/etc/sysconfig/network-scripts目录下,查看有没有ifcfg-XXX的文件(ifcfg-lo除外), 没找到网卡设备,原因:由于Vmware虚拟网卡和Linux兼容问题 ...

  6. 快速了解jquery

    jQuery的基本设计思想和主要用法,就是"选择某个网页元素,然后对其进行某种操作".这是它区别于其他Javascript库的根本特点. 所以jquery的基础语法是: $(sel ...

  7. CentOS 7安装简介及基本操作

    计算机基本概念: 1.计算机硬件组成: 2.计算机系统结构: 3.操作系统的功能:硬件驱动.进程管理.内存管理.网络管理.安全管理.文件管理等. 4.OS通用目的的软件程序:用户<-->应 ...

  8. Java 编码规范(转)

    本文转自:http://www.javaranger.com/archives/390 文章总结出了java编码过程中的一些规范,以便参考. 1.合理组织代码层次,分层清晰:controller.lo ...

  9. DBUtils连接池,websocket

    1.mysql数据库连接池 概念:数据库连接池(Connection pooling)是程序启动时建立足够的数据库连接,并将这些连接组成一个连接池,由程序动态地对池中的连接进行申请,使用,释放. 这样 ...

  10. OC之block 和协议

    一.BOLCK (一)简介 BLOCK是什么?苹果推荐的类型,效率高,在运行中保存代码.用来封装和保存代码,有点像函数,BLOCK可以在任何时候执行. BOLCK和函数的相似性:(1)可以保存代码(2 ...