Sightseeing

Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 639    Accepted Submission(s): 249

Problem Description
Tour operator Your Personal Holiday organises guided bus trips across the Benelux. Every day the bus moves from one city S to another city F. On this way, the tourists in the bus can see the sights alongside the route travelled. Moreover, the bus makes a number of stops (zero or more) at some beautiful cities, where the tourists get out to see the local sights.

Different groups of tourists may have different preferences for the sights they want to see, and thus for the route to be taken from S to F. Therefore, Your Personal Holiday wants to offer its clients a choice from many different routes. As hotels have been booked in advance, the starting city S and the final city F, though, are fixed. Two routes from S to F are considered different if there is at least one road from a city A to a city B which is part of one route, but not of the other route.

There is a restriction on the routes that the tourists may choose from. To leave enough time for the sightseeing at the stops (and to avoid using too much fuel), the bus has to take a short route from S to F. It has to be either a route with minimal distance, or a route which is one distance unit longer than the minimal distance. Indeed, by allowing routes that are one distance unit longer, the tourists may have more choice than by restricting them to exactly the minimal routes. This enhances the impression of a personal holiday.

For example, for the above road map, there are two minimal routes from S = 1 to F = 5: 1 → 2 → 5 and 1 → 3 → 5, both of length 6. There is one route that is one distance unit longer: 1 → 3 → 4 → 5, of length 7.

Now, given a (partial) road map of the Benelux and two cities S and F, tour operator Your Personal Holiday likes to know how many different routes it can offer to its clients, under the above restriction on the route length.

 
Input
The first line of the input file contains a single number: the number of test cases to follow. Each test case has the following format:

One line with two integers N and M, separated by a single space, with 2 ≤ N ≤ 1,000 and 1 ≤ M ≤ 10, 000: the number of cities and the number of roads in the road map.

M lines, each with three integers A, B and L, separated by single spaces, with 1 ≤ A, B ≤ N, A ≠ B and 1 ≤ L ≤ 1,000, describing a road from city A to city B with length L.

The roads are unidirectional. Hence, if there is a road from A to B, then there is not necessarily also a road from B to A. There may be different roads from a city A to a city B.

One line with two integers S and F, separated by a single space, with 1 ≤ S, F ≤ N and S ≠ F: the starting city and the final city of the route.

There will be at least one route from S to F.

 
Output
For every test case in the input file, the output should contain a single number, on a single line: the number of routes of minimal length or one distance unit longer. Test cases are such, that this number is at most 10^9 = 1,000,000,000.

 
Sample Input
2
5 8
1 2 3
1 3 2
1 4 5
2 3 1
2 5 3
3 4 2
3 5 4
4 5 3
1 5
5 6
2 3 1
3 2 1
3 1 10
4 5 2
5 2 7
5 2 7
4 1
 
Sample Output
3
2
 
Source
 
Recommend
lcy   |   We have carefully selected several similar problems for you:  2833 2433 2363 2482 2377 
 

题意就是 求最短路径数和比最短路径大1的路径数的和。

和3191几乎一样+ +自己写了一下次短路,结果wa了好多次...不过这种解法效率真的很高!

 //15MS    528K    2372 B    C++
#include<iostream>
#include<queue>
#include<vector>
#define inf 0x3fffffff
#define N 1005
using namespace std;
struct edge{
int v,w;
edge(int a,int b){
v=a;w=b;
}
};
struct node{
int v,w;
int mark;
bool operator < (const node &p) const{
return p.w<w;
//return p.v<v;
}
};
vector<edge>V[N];
int n,m,s,e;
int d[N][];
int dp[N][];
int vis[N][];
void dijkstra(int s)
{
for(int i=;i<=n;i++)
d[i][]=d[i][]=inf;
memset(dp,,sizeof(dp));
memset(vis,,sizeof(vis));
priority_queue<node>Q;
node p,q;
d[s][]=;
dp[s][]=;
p.w=,p.mark=,p.v=s;
Q.push(p);
while(!Q.empty()){
p=Q.top();
Q.pop();
if(vis[p.v][p.mark]) continue;
vis[p.v][p.mark]=;
int m=V[p.v].size();
for(int i=;i<m;i++){
int v=V[p.v][i].v;
int w=V[p.v][i].w;
if(!vis[v][] && d[v][]>p.w+w){
if(d[v][]!=inf){
d[v][]=d[v][];
dp[v][]=dp[v][];
q.v=v,q.mark=,q.w=d[v][];
Q.push(q);
}
d[v][]=p.w+w;
dp[v][]=dp[p.v][p.mark];
q.v=v,q.mark=,q.w=d[v][];
Q.push(q);
}else if(!vis[v][] && d[v][]==p.w+w){
dp[v][]+=dp[p.v][p.mark];
}else if(!vis[v][] && d[v][]>p.w+w){
d[v][]=p.w+w;
dp[v][]=dp[p.v][p.mark];
q.v=v,q.mark=,q.w=d[v][];
Q.push(q);
}else if(!vis[v][] && d[v][]==p.w+w){
dp[v][]+=dp[p.v][p.mark];
}
}
}
}
int main(void)
{
int u,v,w;
int t;
scanf("%d",&t);
while(t--)
{
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++)
V[i].clear();
for(int i=;i<m;i++){
scanf("%d%d%d",&u,&v,&w);
V[u].push_back(edge(v,w));
//V[v].push_back(edge(u,w));
}
scanf("%d%d",&s,&e);
dijkstra(s);
int ans=dp[e][];
//printf("*%d %d %d\n",ans,d[e][1],d[e][2]);
if(d[e][]==d[e][]+) ans+=dp[e][];
printf("%d\n",ans);
}
return ;
}

hdu 1688 Sightseeing (最短路径)的更多相关文章

  1. HDU 1688 Sightseeing&HDU 3191 How Many Paths Are There(Dijkstra变形求次短路条数)

    Sightseeing Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Tota ...

  2. HDU 1688 Sightseeing

    题目链接:Sightseeing 题意:求最短路和比最短路长度+1的所有路径条数. 附代码:用数组记录最短和次短路径的长度和条数,一次更新,直到没有边可以更新. #include <stdio. ...

  3. HDU 1688 Sightseeing 【输出最短路+次短路条数】

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1688 题目大意:给n个点,m条有向边.再给出起点s, 终点t.求出s到t的最短路条数+次短路条数. 思 ...

  4. 【最短路】HDU 1688 Sightseeing

    题目大意 给出一个有向图(可能存在重边),求从\(S\)到\(F\)最短路的条数,如果次短路的长度仅比最短路的长度多1,那么再加上次短路的条数. 输入格式 第一行是数据组数\(T\). 对于魅族数据, ...

  5. HDU ACM 3790 最短路径问题

    最短路径问题 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Subm ...

  6. poj 3463/hdu 1688 求次短路和最短路个数

    http://poj.org/problem?id=3463 http://acm.hdu.edu.cn/showproblem.php?pid=1688 求出最短路的条数比最短路大1的次短路的条数和 ...

  7. 【HDOJ】1688 Sightseeing

    Dijkstra求解次短路径,使用cnt和dis数组记录最小.次小的个数和长度.重写更新操作. /* 1688 */ #include <iostream> #include <st ...

  8. hdu 3790 (最短路径问题dijkstra)

    主题链接:http://acm.hdu.edu.cn/showproblem.php?pid=3790 Problem Description 给你n个点,m条无向边,每条边都有长度d和花费p,给你起 ...

  9. HDU 2112 HDU Today(最短路径+map)

    HDU Today Time Limit: 15000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total ...

随机推荐

  1. 北京Uber优步司机奖励政策(12月9日)

    滴快车单单2.5倍,注册地址:http://www.udache.com/ 如何注册Uber司机(全国版最新最详细注册流程)/月入2万/不用抢单:http://www.cnblogs.com/mfry ...

  2. 厦门Uber优步司机奖励政策(12月14日到12月20日)

    滴快车单单2.5倍,注册地址:http://www.udache.com/ 如何注册Uber司机(全国版最新最详细注册流程)/月入2万/不用抢单:http://www.cnblogs.com/mfry ...

  3. 【caffe范例详解】 - 1.Classification分类

    1. 安装 首先,导入numpy和matplotlib库 # numpy是常用的科学计算库,matplot是常用的绘图库 import numpy as np import matplotlib.py ...

  4. 用libevent实现的echo服务器及telnet客户端

    以下代码在vs 2010编译通过,使用的libevent版本是:libevent-2.0.22,win7环境测试通过. 服务器实现: 1 流程图: 2 代码: // my_telnet.cpp : D ...

  5. JS实现对数组的去重

    JS实现对数组的去重 $scope.validateContect = function(text) { var arr = text; // 若传入的数据为string类型,用逗号分隔 if((ty ...

  6. C 计算时间差

    #include <stdio.h>int main(){ //新建四个变量 la 代表小时 kc代表时间 int l,k,a,c; //输入 两个时间 scanf("%d %d ...

  7. 线性代数之——微分方程和 exp(At)

    本节的核心是将常系数微分方程转化为线性代数问题. \[\frac{du}{dt}=\lambda u \quad 的解为 \quad u(t) = Ce^{\lambda t}\] 代入 \(t=0\ ...

  8. #pragma pack(n)对齐格式

    #pragma pack(n)对齐格式 #pragma pack(n) 是预处理器用来指定对齐格式的指令,表示n对齐.当元素字节小于n时,要扩展到n:若元素字节大于n则占用其实际大小. struct ...

  9. opencv打开视频文件出错

    使用C#调用mingw的so文件,在C++端使用opencv打开视频.这样的项目完成过了一个,第二次做的时候,发现opencv打开视频文件出错. 首先怀疑是opencv的opencv_ffmpeg24 ...

  10. 软件功能-东北师大站-第三次作业(PSP)

    1.本周PSP 2.本周进度条 3.本周累计进度图 代码累计折线图 博文字数累计折线图 本周PSP饼状图