[PKUSC2018]真实排名
[PKUSC2018]真实排名
题目大意:
有\(n(n\le10^5)\)个人,每个人有一个成绩\(A_i(0\le A_i\le10^9)\)。定义一个人的排名为\(n\)个人中成绩不小于他的总人数。现在恰好有\(k\)个人的成绩翻倍。问对于每个人,有多少种情况满足这个人的排名不变。
思路:
排名不变的情况不外乎两种:
- \(A_i\)本身不翻倍,且满足\(\lfloor\frac{A_i+1}2\rfloor\le A_j<A_i\)的\(A_j\)均不翻倍。
- \(A_i\)本身翻倍,且满足\(A_i\le A_j<2A_i\)的\(A_j\)均翻倍。
对\(A_{1\sim n}\)进行排序,设排序后的数组为\(tmp\)。令:
p=std::lower_bound(&tmp[1],&tmp[n]+1,(a[i]+1)/2)-tmp-1。q=std::lower_bound(&tmp[1],&tmp[n]+1,a[i])-tmp。r=std::lower_bound(&tmp[1],&tmp[n]+1,a[i]*2)-tmp+!a[i]。
其中\(p\)的-1是为了方便将\(A_i\)本身也算入不翻倍的部分,而\(r\)的+!a[i]是考虑\(A_i=0\)的情况,将\(A_i\)自身算入翻倍的部分。
显然,对于第一种情况,方案数为\(\binom{n-q+p}k\);对于第二种情况,方案数为\(\binom{n-r+q}{k-r+q}\)。
组合数可以直接预处理阶乘及阶乘逆元,剩下主要是排序和二分。时间复杂度\(\mathcal O(n\log n)\)。
源代码:
#include<cstdio>
#include<cctype>
#include<algorithm>
typedef long long int64;
inline int getint() {
register char ch;
while(!isdigit(ch=getchar()));
register int x=ch^'0';
while(isdigit(ch=getchar())) x=(((x<<2)+x)<<1)+(ch^'0');
return x;
}
const int N=1e5+1,mod=998244353;
int a[N],tmp[N],fact[N],factinv[N];
void exgcd(const int &a,const int &b,int &x,int &y) {
if(!b) {
x=1,y=0;
return;
}
exgcd(b,a%b,y,x);
y-=a/b*x;
}
inline int inv(const int &x) {
int ret,tmp;
exgcd(x,mod,ret,tmp);
return (ret%mod+mod)%mod;
}
inline int C(const int &n,const int &m) {
if(n<m||n<0||m<0) return 0;
return (int64)fact[n]*factinv[m]%mod*factinv[n-m]%mod;
}
int main() {
const int n=getint(),k=getint();
for(register int i=1;i<=n;i++) {
tmp[i]=a[i]=getint();
}
std::sort(&tmp[1],&tmp[n]+1);
for(register int i=fact[0]=1;i<=n;i++) {
fact[i]=(int64)fact[i-1]*i%mod;
}
factinv[n]=inv(fact[n]);
for(register int i=n;i;i--) {
factinv[i-1]=(int64)factinv[i]*i%mod;
}
for(register int i=1;i<=n;i++) {
const int p=std::lower_bound(&tmp[1],&tmp[n]+1,(a[i]+1)/2)-tmp-1;
const int q=std::lower_bound(&tmp[1],&tmp[n]+1,a[i])-tmp;
const int r=std::lower_bound(&tmp[1],&tmp[n]+1,a[i]*2)-tmp+!a[i];
printf("%d\n",(C(n-q+p,k)+C(n-r+q,k-r+q))%mod);
}
return 0;
}
[PKUSC2018]真实排名的更多相关文章
- 【LOJ4632】[PKUSC2018]真实排名
[LOJ4632][PKUSC2018]真实排名 题面 终于有题面啦!!! 题目描述 小 C 是某知名比赛的组织者,该比赛一共有 \(n\) 名选手参加,每个选手的成绩是一个非负整数,定义一个选手的排 ...
- BZOJ_5368_[Pkusc2018]真实排名_组合数
BZOJ_5368_[Pkusc2018]真实排名_组合数 Description 小C是某知名比赛的组织者,该比赛一共有n名选手参加,每个选手的成绩是一个非负整数,定义一个选手的排名是:成绩不小于他 ...
- [PKUSC2018]真实排名——线段树+组合数
题目链接: [PKUSC2018]真实排名 对于每个数$val$分两种情况讨论: 1.当$val$不翻倍时,那么可以翻倍的是权值比$\frac{val-1}{2}$小的和大于等于$val$的. 2.当 ...
- BZOJ5368:[PKUSC2018]真实排名(组合数学)
Description 小C是某知名比赛的组织者,该比赛一共有n名选手参加,每个选手的成绩是一个非负整数,定义一个选手的排名是:成绩不小于他的选手的数量(包括他自己). 例如如果333位选手的成绩分别 ...
- bzoj 5368: [Pkusc2018]真实排名
Description 小C是某知名比赛的组织者,该比赛一共有n名选手参加,每个选手的成绩是一个非负整数,定义一个选手的排名是 :成绩不小于他的选手的数量(包括他自己).例如如果3位选手的成绩分别是[ ...
- bzoj5368 [Pkusc2018]真实排名
题目描述: bz luogu 题解: 组合数计数问题. 首先注意排名指的是成绩不小于他的选手的数量(包括他自己). 考虑怎么增大才能改变排名. 小学生都知道,对于成绩为$x$的人,让他自己不动并让$\ ...
- 【洛谷5368】[PKUSC2018] 真实排名(组合数学)
点此看题面 大致题意: 有\(n\)个数字,定义一个数的排名为不小于它的数的个数.现要随机将其中\(k\)个数乘\(2\),求对于每个数有多少种方案使其排名不变. 分类讨论 对于这种题目,我们可以分类 ...
- Luogu P5368 [PKUSC2018]真实排名
老年选手只会做SB题了(还调了好久) 很容易想到分类讨论,按第\(i\)个人有没有翻倍来算 若\(a_i\)未翻倍,显然此时将\([0,\lceil \frac{a_i}{2}\rceil)\)的数和 ...
- LOJ6432 [PKUSC2018] 真实排名 【组合数】
题目分析: 做三个指针然后预处理阶乘就行. 题目代码: #include<bits/stdc++.h> using namespace std; ; ; int n,k; struct n ...
随机推荐
- vue_真机调试页面
使用vue开发也有一段时间,是说我太懒了,还是说太懒了.得总结总结的. 之前在开发的时候都是,npm run build把页面打包后再上传到代码库上线用手机看页面效果.样式调整,嗯,很麻烦很傻的. 今 ...
- Spring Cloud与Spring Boot的关系
1.Spring Cloud是一个工具集:Spring Cloud是在Spring Boot的基础上构建的,用于简化分布式系统构建的工具集:使架构师在创建和发布微服务时极为便捷和有效. Sp ...
- Spark-2.3.2【SparkStreaming+SparkSQL-实时仪表盘应用】
应用场景:实时仪表盘(即大屏),每个集团下有多个mall,每个mall下包含多家shop,需实时计算集团下各mall及其shop的实时销售分析(区域.业态.店铺TOP.总销售额等指标)并提供可视化展现 ...
- 宿主机mount虚拟机镜像文件
转载 mount挂载虚拟机镜像文件 使用mount挂载ubuntu虚拟机所在的img文件的时候,执行: “sudo mount -o loop xxx.img /mnt/xxx”, 系统提示: “mo ...
- 64_l3
libguac-client-ssh-0.9.13-3.20170521git6d2cfda...> 23-May-2017 09:58 64570 libguac-client-ssh-0.9 ...
- python近期遇到的一些面试问题(一)
整理一下最近被问到的一些高频率的面试问题.总结一下方便日后复习巩固用,同时希望可以帮助一些朋友们. 1.python的基本数据类型 主要核心类型分为两类不可变类型:数字(int float bool ...
- 【数位dp入门】【HDU4734】F(x)
记录减的状态,表示还要凑多少才能达到当前值. 然后进行枚举即可.注意状态数不能重复. #include<bits/stdc++.h> #define N 10010 using names ...
- opengl基础学习专题 (一 )编程环境搭建
题外话: 第一次在博客园上同大家分享博文.水的的地方,错别字的地方.环境交流.批评.知道了马上改. 以前在百度空间中写技术分享博文,后来百度啥也没说就把整个空间封了.当时感觉 还是有点寒心.只想黑一下 ...
- python一步高级编程
1.==,is的使用 总结 ·is是比较两个引用是否指向了同一个对象(引用比较). ·==是比较两个对象是否相等. 2.深拷贝.浅拷贝 1.浅拷贝 浅拷贝是对于一个对象的顶层拷贝 通俗的理解是:拷贝了 ...
- UNIX shell 学习笔记 一 : 几个shell的规则语法对比
1. 查看系统有哪些可用的shell cat /etc/shell 2. 每种shell都有一个特殊内置变量来存上一条命令的退出状态,例: C/TC shell $status % cp fx fy ...