[BZOJ 1855] 股票交易
Link:
Solution:
比较明显的$dp$模型
令$dp[i][j]$为第$i$天持有$j$支股票时的最大利润
对其购买股票和售出股票分别$dp$,这里以购买为例:
$dp[i][j]=max\{ dp[lst][k]-ap*(j-k)\}$
发现可以将递归式转化为仅与$k$相关的$dp[lst][k]+ap*k$和仅与$j$相关的$ap*j$
于是可以利用单调队列将复杂度降到$O(n)$,时刻保持$j-k\le as$即可
要注意初始化,一开始要先全置为$-INF$
对于$[0,as]$的项的初始值为$max(dp[i-1][j],-ap*j)$
Code:
#include <bits/stdc++.h> using namespace std;
#define X first
#define Y second
typedef pair<int,int> P;
const int MAXN=,INF=<<;
P q[MAXN];
int l,r,n,mx,sep,res=-INF;
int ap,bp,as,bs,lst,dp[MAXN][MAXN]; int main()
{
scanf("%d%d%d",&n,&mx,&sep);
for(int i=;i<MAXN;i++) for(int j=;j<MAXN;j++)
dp[i][j]=-INF;
for(int i=;i<=n;i++)
{
scanf("%d%d%d%d",&ap,&bp,&as,&bs);
for(int j=;j<=as;j++) dp[i][j]=-ap*j;
for(int j=;j<=mx;j++) dp[i][j]=max(dp[i][j],dp[i-][j]); int lst=i-sep-;
if(lst<) continue;
l=;r=;
for(int j=;j<=mx;j++)
{
while(l<=r&&j-q[l].X>as) l++;
while(l<=r&&q[r].Y<=dp[lst][j]+ap*j) r--;
q[++r]=P(j,dp[lst][j]+ap*j);
dp[i][j]=max(dp[i][j],q[l].Y-ap*j);
} l=;r=;
for(int j=mx;j>=;j--)
{
while(l<=r&&q[l].X-j>bs) l++;
while(l<=r&&q[r].Y<=dp[lst][j]+bp*j) r--;
q[++r]=P(j,dp[lst][j]+bp*j);
dp[i][j]=max(dp[i][j],q[l].Y-bp*j);
}
res=max(res,dp[i][]);
}
printf("%d",res);
return ;
}
[BZOJ 1855] 股票交易的更多相关文章
- BZOJ 1855 股票交易(单调队列优化DP)
题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=1855 题意:最近lxhgww又迷上了投资股票, 通过一段时间的观察和学习,他总结出了股票 ...
- BZOJ 1855 股票交易 (算竞进阶习题)
单调队列优化dp dp真的是难..不看题解完全不知道状态转移方程QAQ 推出方程后发现是关于j,k独立的多项式,所以可以单调队列优化.. #include <bits/stdc++.h> ...
- BZOJ 1855 股票交易 - 单调队列优化dp
传送门 题目分析: \(f[i][j]\)表示第i天,手中拥有j份股票的最优利润. 如果不买也不卖,那么\[f[i][j] = f[i-1][j]\] 如果买入,那么\[f[i][j] = max\{ ...
- BZOJ 1855: [Scoi2010]股票交易(DP+单调队列)
1855: [Scoi2010]股票交易 Description 最近lxhgww又迷上了投资股票,通过一段时间的观察和学习,他总结出了股票行情的一些规律. 通过一段时间的观察,lxhgww预测到了未 ...
- ●BZOJ 1855 [Scoi2010]股票交易
题链: http://www.lydsy.com/JudgeOnline/problem.php?id=1855 题解: DP,单调队列优化.(好久没做 DP题,居然还意外地想出来了) 定义 dp[i ...
- 单调队列优化DP || [SCOI2010]股票交易 || BZOJ 1855 || Luogu P2569
题面:P2569 [SCOI2010]股票交易 题解: F[i][j]表示前i天,目前手中有j股的最大收入Case 1:第i天是第一次购买股票F[i][j]=-j*AP[i]; (1<=j< ...
- bzoj 1855: [Scoi2010]股票交易
Description 最近lxhgww又迷上了投资股票,通过一段时间的观察和学习,他总结出了股票行情的一些规律. 通过一段时间的观察,lxhgww预测到了未来T天内某只股票的走势,第i天的股票买入价 ...
- 股票交易(bzoj 1855)
Description 最近lxhgww又迷上了投资股票,通过一段时间的观察和学习,他总结出了股票行情的一些规律. 通过一段时间的观察,lxhgww预测到了未来T天内某只股票的走势,第i天的股票买入价 ...
- BZOJ 1855 [Scoi2010]股票交易 ——动态规划
DP方程是比较简单的,主要有三种:什么都不做.买入.卖出. 发现买入卖出都是$\Theta (n^3)$但是转移方程都是线性的,而且决策和当前的情况是分开的. 所以可以单调队列优化. 复杂度$\The ...
随机推荐
- HDU 1372 Knight Moves (广搜)
题目链接 Problem Description A friend of you is doing research on the Traveling Knight Problem (TKP) whe ...
- 14、char和varchar的区别?
就长度来说: ♣ char的长度是不可变的; ♣ 而varchar的长度是可变的,也就是说,定义一个char[10]和varchar[10],如果存进去的是‘csdn’,那么char所占的长度依然为1 ...
- bzoj 3207 可持久化线段树
首先因为固定询问长度,所以我们可以将整个长度为n的数列hash成长度为n-k+1的数列,每次询问的序列也hash成一个数,然后询问这个数是不是在某个区间中出现过,这样我们可以根据初始数列的权值建立可持 ...
- bzoj 1406 数论
首先问题的意思就是在找出n以内的所有x^2%n=1的数,那么我们可以得到(x+1)(x-1)=y*n,那么我们知道n|(x+1)(x-1),我们设n=a*b,那么我们对于任意的a,我们满足n%a==0 ...
- 大原則 研讀 spec 與 code 的 心得
最近在研究 stm32f429i-disc0 的 device tree source code, 並且 參造 Devicetree Specification Release 0.1, 在 dts ...
- 图论-最小生成树-Kruskal算法
有关概念: 最小生成树:在连通图G中,连接图G所有顶点且总权最小的边构成的树 思路: 首先对边按权从小到大排序,紧接着枚举每一条边,如果两个结点的祖先结点不同(并查集),则连上此边,直到边数等于结点数 ...
- 2017多校第6场 HDU 6096 String AC自动机
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6096 题意:给了一些模式串,然后再给出一些文本串的不想交的前后缀,问文本串在模式串的出现次数. 解法: ...
- edittext 的一个案例
<?xml version="1.0" encoding="utf-8"?> <LinearLayout xmlns:android= ...
- leetcode之Ransom Note
题目描述: Given an arbitrary ransom note string and another string containing letters from a ...
- Guava Cache 使用笔记
https://www.cnblogs.com/parryyang/p/5777019.html https://www.cnblogs.com/shoren/p/guava_cache.html J ...