觉得有用的话,欢迎一起讨论相互学习~Follow Me

1.10 梯度消失和梯度爆炸

当训练神经网络,尤其是深度神经网络时,经常会出现的问题是梯度消失或者梯度爆炸,也就是说当你训练深度网络时,导数或坡度有时会变得非常大,或非常小,甚至以指数方式变小.这加大了训练的难度.

假设你正在训练一个很深的神经网络,并且将其权重命名为"W[1],W[2],W[3],W[4]......W[L]"

为了简化说明,我们选择激活函数为g(z)=z(线性激活函数),b[l]=0(即忽略偏置对神经网络的影响)

这样的话,输出\(\hat{y}=w[l]*w[l-1]*w[l-2]...w[2]*w[1]*x\)

假设每层的W的值相等都为:\(\begin{bmatrix}1.5&0\\0&1.5\\\end{bmatrix}\)

从技术上讲第一层的权值可能不同,基于此我们有式子\(\hat{y}=w[1]*\begin{bmatrix}1.5&0\\0&1.5\\\end{bmatrix}^{L-1}*x\)

对于一个深层神经网络来说层数L相当大,也就是说预测值\(\hat{y}\)实际上是以指数级增长的,它增长的比率是\(1.5^L\),因此对于一个深层神经网络来说,y的值将爆炸式增长.相反的,如果权重是0.5,有\(\hat{y}=w[1]*\begin{bmatrix}0.5&0\\0&0.5\\\end{bmatrix}^{L-1}*x\) 因此每个矩阵都小于1,假设x[1]x[2]的输入值都是1,那么激活函数值到最后会变成\(0.5^{(L-1)}\)激活函数值将会以指数级别下降.

对于深层神经网络最终激活值的直观理解是,以上述网络结构来看,如果每一层W只比1大一点,最终W会爆炸级别增长,如果只比W略微小一点,在深度神经网络中,激活函数将以指数级递减.

虽然只是论述了对于最终激活函数输出值将以指数级别增长或下降,这个原理也适用与层数L相关的导数或梯度函数也是呈指数增长或呈指数递减

直观上理解,梯度消失会导致优化函数训练步长变小,使训练周期变的很长.而梯度爆炸会因为过大的优化幅度而跨过最优解

ps: 对于该视频中关于梯度消失和梯度爆炸的原理有一些争论

请参考

1.11 神经网络中的权重初始化

对于梯度消失和梯度爆炸的问题,我们想出了一个不完整的解决方案,虽然不能彻底解决问题但却很有用,有助于我们为神经网络更谨慎的选择随机初始化参数

单个神经元权重初始化

假设神经元有四个特征输入,暂时忽略b对神经元的作用则:\(z=w_{1}x_{1}+w_{2}x_{2}+w_{3}x{3}+...+w_{n}x_{n}\)

为了防止梯度爆炸或者梯度消失,我们希望\(w_{i}\)尽可能小,最合理的方法就是设置\(W方差为\frac{1}{n}\) n表示神经元的输入特征数量

更简洁的说,如果你用的是Sigmoid函数,设置某层权重矩阵\(W^{[l]}=np.random.randn(shape)*np.sqrt(\frac{1}{n^{[l-1]}})(该层每个神经元的特征数量分之一,即l层上拟合的单元数量)\)

如果你用的是ReLU激活函数,设置方差为\(\frac{2}{n}\)更好,更简洁的说,就是设置某层权重矩阵\(W^{[l]}=np.random.randn(shape)*np.sqrt(\frac{2}{n^{[l-1]}})(该层每个神经元的特征数量分之一,即l层上拟合的单元数量)\)

如果你用的是Tanh激活函数,则设置某层权重矩阵为\(W^{[l]}=np.random.randn(shape)*np.sqrt(\frac{1}{n^{[l-1]}})\)或者为\(W^{[l]}=np.random.randn(shape)*np.sqrt(\frac{2}{n^{[l-1]}+n^{l}})\)

这些方法都被成为Xavier 初始化(Xavier initialization),实际上,NG认为所有这些公式都只是给你一个起点,它们给出初始化权重矩阵的方差的默认值,如果你想添加方差,则方差参数则是另一个你需要调整的超级参数,例如对于ReLU激活函数而言,你可以尝试给公式\(W^{[l]}=np.random.randn(shape)*np.sqrt(\frac{2}{n^{[l-1]}})\)添加一个乘数参数,但是NG认为相对于其他参数的调优,通常把它的调优优先级放得比较低.

1.12 梯度的数值逼近

主要讲利用双边误差计算公式:

\[\frac{f(\theta+\epsilon)-f(\theta-\epsilon)}{2\epsilon}\approx{g(\theta)}\]

利用这个公式简单的估计函数的微分.

补充资料

梯度检查

[DeeplearningAI笔记]改善深层神经网络_深度学习的实用层面1.10_1.12/梯度消失/梯度爆炸/权重初始化的更多相关文章

  1. [DeeplearningAI笔记]改善深层神经网络_深度学习的实用层面1.9_归一化normalization

    觉得有用的话,欢迎一起讨论相互学习~Follow Me 1.9 归一化Normaliation 训练神经网络,其中一个加速训练的方法就是归一化输入(normalize inputs). 假设我们有一个 ...

  2. deeplearning.ai 改善深层神经网络 week1 深度学习的实用层面 听课笔记

    1. 应用机器学习是高度依赖迭代尝试的,不要指望一蹴而就,必须不断调参数看结果,根据结果再继续调参数. 2. 数据集分成训练集(training set).验证集(validation/develop ...

  3. deeplearning.ai 改善深层神经网络 week1 深度学习的实用层面

    1. 应用机器学习是高度依赖迭代尝试的,不要指望一蹴而就,必须不断调参数看结果,根据结果再继续调参数. 2. 数据集分成训练集(training set).验证集(validation/develop ...

  4. [DeeplearningAI笔记]改善深层神经网络_优化算法2.6_2.9Momentum/RMSprop/Adam优化算法

    Optimization Algorithms优化算法 觉得有用的话,欢迎一起讨论相互学习~Follow Me 2.6 动量梯度下降法(Momentum) 另一种成本函数优化算法,优化速度一般快于标准 ...

  5. [DeeplearningAI笔记]改善深层神经网络_优化算法2.1_2.2_mini-batch梯度下降法

    觉得有用的话,欢迎一起讨论相互学习~Follow Me 2.1 mini-batch gradient descent mini-batch梯度下降法 我们将训练数据组合到一个大的矩阵中 \(X=\b ...

  6. [DeeplearningAI笔记]改善深层神经网络_优化算法2.3_2.5_带修正偏差的指数加权平均

    Optimization Algorithms优化算法 觉得有用的话,欢迎一起讨论相互学习~Follow Me 2.3 指数加权平均 举个例子,对于图中英国的温度数据计算移动平均值或者说是移动平均值( ...

  7. [DeeplearningAI笔记]改善深层神经网络1.4_1.8深度学习实用层面_正则化Regularization与改善过拟合

    觉得有用的话,欢迎一起讨论相互学习~Follow Me 1.4 正则化(regularization) 如果你的神经网络出现了过拟合(训练集与验证集得到的结果方差较大),最先想到的方法就是正则化(re ...

  8. [DeeplearningAI笔记]改善深层神经网络1.1_1.3深度学习使用层面_偏差/方差/欠拟合/过拟合/训练集/验证集/测试集

    觉得有用的话,欢迎一起讨论相互学习~Follow Me 1.1 训练/开发/测试集 对于一个数据集而言,可以将一个数据集分为三个部分,一部分作为训练集,一部分作为简单交叉验证集(dev)有时候也成为验 ...

  9. 改善深层神经网络_优化算法_mini-batch梯度下降、指数加权平均、动量梯度下降、RMSprop、Adam优化、学习率衰减

    1.mini-batch梯度下降 在前面学习向量化时,知道了可以将训练样本横向堆叠,形成一个输入矩阵和对应的输出矩阵: 当数据量不是太大时,这样做当然会充分利用向量化的优点,一次训练中就可以将所有训练 ...

随机推荐

  1. iptables网络安全服务详细使用

    iptables防火墙概念说明 开源的基于数据包过滤的网络安全策略控制工具. centos6.9  --- 默认防火墙工具软件iptables centos7    --- 默认防火墙工具软件fire ...

  2. 成功破解邻居的Wifi密码

    // 这是一篇导入进来的旧博客,可能有时效性问题. 默认配置的路由器,8位以下密码,黑客几分钟就可以破解.以前用自己的路由器做过实验,这次真正实践成功.环境:Kali Linux工具集:aircrac ...

  3. Java Web应用集成OSGI

    对OSGI的简单理解 就像Java Web应用程序需要运行在Tomcat.Weblogic这样的容器中一样.程序员开发的OSGI程序包也需要运行在OSGI容器中.目前主流的OSGI容器包括:Apach ...

  4. JavaSE(四)之接口、访问控制

    上面我们学习了几个修饰符,在开发中经常会用的到,所以必须熟练的掌握.接下来我学习一下接口和访问控制. 一.接口 一系列方法的声明,是一些方法特征的集合,一个接口只有方法的特征没有方法的实现,因此这些方 ...

  5. [51nod1684]子集价值

    lyk最近在研究位运算. 它发现除了xor,or,and外还有很多运算. 它新定义了一种运算符"#". 具体地,可以由4个参数来表示. ai,j表示 i#j. 其中i,j与a的值均 ...

  6. Qt 共享库(动态链接库)和静态链接库的创建及调用

    前言: 编译器 Qt Creator, 系统环境 win7 64 位 1.创建共享库: 新建文件或项目->选择 Library 和 c++ 库->选择共享库->下一步(工程名为 sh ...

  7. Linux学习之XShell与虚拟机的连接

    最近在慕课网上学习Linux视频,记录一下解决问题的方法和过程. 实验软件环境: 虚拟机软件Vmware Workstation10.0.虚拟机系统CentOS 6.3(32位).XShell 5.0 ...

  8. 如何制作gif图片

    制作Gif图片的方法很多,大多数情况下都会选择利用PS中的ImageReady插件来制作.其实还有其它更好的选择来制作Gift图片,其中一款软件就是利用Flash来实现.下面小编就给大家展示一下如何利 ...

  9. webpack+vue项目实战(四,前端与后端的数据交互和前端展示数据)

    地址:https://segmentfault.com/a/1190000010063757 1.前言 今天要做的,就是在上一篇文章的基础上,进行功能页面的开发.简单点说呢,就是与后端的数据交互和怎么 ...

  10. Vuejs实例-00Vuejs2.0全家桶结合ELementUI制作后台管理系统

    Vuejs2.0全家桶结合ELementUI制作后台管理系统 0: 系统环境的介绍 1: Vuejs实例-01使用vue-cli脚手架搭建Vue.js项目 2: Vuejs实例-02Vue.js项目集 ...