[DeeplearningAI笔记]改善深层神经网络_深度学习的实用层面1.10_1.12/梯度消失/梯度爆炸/权重初始化
觉得有用的话,欢迎一起讨论相互学习~Follow Me
1.10 梯度消失和梯度爆炸
当训练神经网络,尤其是深度神经网络时,经常会出现的问题是梯度消失或者梯度爆炸,也就是说当你训练深度网络时,导数或坡度有时会变得非常大,或非常小,甚至以指数方式变小.这加大了训练的难度.
假设你正在训练一个很深的神经网络,并且将其权重命名为"W[1],W[2],W[3],W[4]......W[L]"

为了简化说明,我们选择激活函数为g(z)=z(线性激活函数),b[l]=0(即忽略偏置对神经网络的影响)
这样的话,输出\(\hat{y}=w[l]*w[l-1]*w[l-2]...w[2]*w[1]*x\)
假设每层的W的值相等都为:\(\begin{bmatrix}1.5&0\\0&1.5\\\end{bmatrix}\)
从技术上讲第一层的权值可能不同,基于此我们有式子\(\hat{y}=w[1]*\begin{bmatrix}1.5&0\\0&1.5\\\end{bmatrix}^{L-1}*x\)
对于一个深层神经网络来说层数L相当大,也就是说预测值\(\hat{y}\)实际上是以指数级增长的,它增长的比率是\(1.5^L\),因此对于一个深层神经网络来说,y的值将爆炸式增长.相反的,如果权重是0.5,有\(\hat{y}=w[1]*\begin{bmatrix}0.5&0\\0&0.5\\\end{bmatrix}^{L-1}*x\) 因此每个矩阵都小于1,假设x[1]x[2]的输入值都是1,那么激活函数值到最后会变成\(0.5^{(L-1)}\)激活函数值将会以指数级别下降.
对于深层神经网络最终激活值的直观理解是,以上述网络结构来看,如果每一层W只比1大一点,最终W会爆炸级别增长,如果只比W略微小一点,在深度神经网络中,激活函数将以指数级递减.
虽然只是论述了对于最终激活函数输出值将以指数级别增长或下降,这个原理也适用与层数L相关的导数或梯度函数也是呈指数增长或呈指数递减
直观上理解,梯度消失会导致优化函数训练步长变小,使训练周期变的很长.而梯度爆炸会因为过大的优化幅度而跨过最优解
ps: 对于该视频中关于梯度消失和梯度爆炸的原理有一些争论
请参考
1.11 神经网络中的权重初始化
对于梯度消失和梯度爆炸的问题,我们想出了一个不完整的解决方案,虽然不能彻底解决问题但却很有用,有助于我们为神经网络更谨慎的选择随机初始化参数
单个神经元权重初始化

假设神经元有四个特征输入,暂时忽略b对神经元的作用则:\(z=w_{1}x_{1}+w_{2}x_{2}+w_{3}x{3}+...+w_{n}x_{n}\)
为了防止梯度爆炸或者梯度消失,我们希望\(w_{i}\)尽可能小,最合理的方法就是设置\(W方差为\frac{1}{n}\) n表示神经元的输入特征数量
更简洁的说,如果你用的是Sigmoid函数,设置某层权重矩阵\(W^{[l]}=np.random.randn(shape)*np.sqrt(\frac{1}{n^{[l-1]}})(该层每个神经元的特征数量分之一,即l层上拟合的单元数量)\)
如果你用的是ReLU激活函数,设置方差为\(\frac{2}{n}\)更好,更简洁的说,就是设置某层权重矩阵\(W^{[l]}=np.random.randn(shape)*np.sqrt(\frac{2}{n^{[l-1]}})(该层每个神经元的特征数量分之一,即l层上拟合的单元数量)\)
如果你用的是Tanh激活函数,则设置某层权重矩阵为\(W^{[l]}=np.random.randn(shape)*np.sqrt(\frac{1}{n^{[l-1]}})\)或者为\(W^{[l]}=np.random.randn(shape)*np.sqrt(\frac{2}{n^{[l-1]}+n^{l}})\)
这些方法都被成为Xavier 初始化(Xavier initialization),实际上,NG认为所有这些公式都只是给你一个起点,它们给出初始化权重矩阵的方差的默认值,如果你想添加方差,则方差参数则是另一个你需要调整的超级参数,例如对于ReLU激活函数而言,你可以尝试给公式\(W^{[l]}=np.random.randn(shape)*np.sqrt(\frac{2}{n^{[l-1]}})\)添加一个乘数参数,但是NG认为相对于其他参数的调优,通常把它的调优优先级放得比较低.
1.12 梯度的数值逼近
主要讲利用双边误差计算公式:
\[\frac{f(\theta+\epsilon)-f(\theta-\epsilon)}{2\epsilon}\approx{g(\theta)}\]
利用这个公式简单的估计函数的微分.
补充资料
[DeeplearningAI笔记]改善深层神经网络_深度学习的实用层面1.10_1.12/梯度消失/梯度爆炸/权重初始化的更多相关文章
- [DeeplearningAI笔记]改善深层神经网络_深度学习的实用层面1.9_归一化normalization
觉得有用的话,欢迎一起讨论相互学习~Follow Me 1.9 归一化Normaliation 训练神经网络,其中一个加速训练的方法就是归一化输入(normalize inputs). 假设我们有一个 ...
- deeplearning.ai 改善深层神经网络 week1 深度学习的实用层面 听课笔记
1. 应用机器学习是高度依赖迭代尝试的,不要指望一蹴而就,必须不断调参数看结果,根据结果再继续调参数. 2. 数据集分成训练集(training set).验证集(validation/develop ...
- deeplearning.ai 改善深层神经网络 week1 深度学习的实用层面
1. 应用机器学习是高度依赖迭代尝试的,不要指望一蹴而就,必须不断调参数看结果,根据结果再继续调参数. 2. 数据集分成训练集(training set).验证集(validation/develop ...
- [DeeplearningAI笔记]改善深层神经网络_优化算法2.6_2.9Momentum/RMSprop/Adam优化算法
Optimization Algorithms优化算法 觉得有用的话,欢迎一起讨论相互学习~Follow Me 2.6 动量梯度下降法(Momentum) 另一种成本函数优化算法,优化速度一般快于标准 ...
- [DeeplearningAI笔记]改善深层神经网络_优化算法2.1_2.2_mini-batch梯度下降法
觉得有用的话,欢迎一起讨论相互学习~Follow Me 2.1 mini-batch gradient descent mini-batch梯度下降法 我们将训练数据组合到一个大的矩阵中 \(X=\b ...
- [DeeplearningAI笔记]改善深层神经网络_优化算法2.3_2.5_带修正偏差的指数加权平均
Optimization Algorithms优化算法 觉得有用的话,欢迎一起讨论相互学习~Follow Me 2.3 指数加权平均 举个例子,对于图中英国的温度数据计算移动平均值或者说是移动平均值( ...
- [DeeplearningAI笔记]改善深层神经网络1.4_1.8深度学习实用层面_正则化Regularization与改善过拟合
觉得有用的话,欢迎一起讨论相互学习~Follow Me 1.4 正则化(regularization) 如果你的神经网络出现了过拟合(训练集与验证集得到的结果方差较大),最先想到的方法就是正则化(re ...
- [DeeplearningAI笔记]改善深层神经网络1.1_1.3深度学习使用层面_偏差/方差/欠拟合/过拟合/训练集/验证集/测试集
觉得有用的话,欢迎一起讨论相互学习~Follow Me 1.1 训练/开发/测试集 对于一个数据集而言,可以将一个数据集分为三个部分,一部分作为训练集,一部分作为简单交叉验证集(dev)有时候也成为验 ...
- 改善深层神经网络_优化算法_mini-batch梯度下降、指数加权平均、动量梯度下降、RMSprop、Adam优化、学习率衰减
1.mini-batch梯度下降 在前面学习向量化时,知道了可以将训练样本横向堆叠,形成一个输入矩阵和对应的输出矩阵: 当数据量不是太大时,这样做当然会充分利用向量化的优点,一次训练中就可以将所有训练 ...
随机推荐
- npm 简单实用命令
npm -v 查看版本号 npm get global 返回false表示默认本地安装 true全局安装 npm set global=true 设置默认为全局安 ...
- GStreamer Windows tutorial demo 开发环境配置
GStreamer 示例程序在 Windows 环境配置时坑比较多,好不容易配置成功了,写篇文档分享一下安装的关键步骤 官方文档见:https://gstreamer.freedesktop.org/ ...
- VueI18n插件的简单应用于国际化
作为一个前端小白,刚刚接触学习Vue.js框架结合Element-ui组件开发项目.由于最近需要实现国际化功能,在看element-ui的开发文档时,只有简单的引入没有应用实例,对于我这种小白不能ge ...
- Hadoop(十五)MapReduce程序实例
一.统计好友对数(去重) 1.1.数据准备 joe, jon joe , kia joe, bob joe ,ali kia, joe kia ,jim kia, dee dee ,kia dee, ...
- AtCoder Grand Contest 015
传送门 A - A+...+B Problem 题意:n个数最大值a,最小值b,求和的可能数量. #include<cstdio> #include<algorithm> us ...
- Codeforces 833E Caramel Clouds
E. Caramel Clouds time limit per test:3 seconds memory limit per test:256 megabytes input:standard i ...
- Prim最小生成树板子
普里姆算法可以称为"加点法",每次迭代选择代价最小的边对应的点,加入到最小生成树中.算法从某一个顶点s开始,逐渐长大覆盖整个连通网的所有顶点. 邻接矩阵存图 时间复杂度O(n^2 ...
- 状压dp入门第一题 poj3254
题目链接 http://poj.org/problem?id=3254 转自http://blog.csdn.net/harrypoirot/article/details/23163485 #inc ...
- linux中mv命令使用详解
mv命令是move的缩写,可以用来移动文件或者将文件改名(move (rename) files),是Linux系统下常用的命令,经常用来备份文件或者目录. 1.命令格式: mv [选项] 源文件或目 ...
- c++(排序二叉树线索化)
前面我们谈到了排序二叉树,还没有熟悉的同学可以看一下这个,二叉树基本操作.二叉树插入.二叉树删除1.删除2.删除3.但是排序二叉树也不是没有缺点,比如说,如果我们想在排序二叉树中删除一段数据的节点怎么 ...