很明显是一道半平面交的题。

先说一下半平面交的步骤:

1.用点向法(点+向量)表示直线

2.极角排序,若极角相同,按相对位置排序。

3.去重,极角相同的保留更优的

4.枚举边维护双端队列

5.求答案

1就不说了,2中的极角可以用atan2(y,x)来求,因为atan2精度要高



双端队列的原因是新加的一条边对头和尾都有影响,如图:

如何去判断:只要判断线head和线head+1,的交点p与新的一条线的位置关系就可以

至于交点的求法:先见图:

求\(p_1v_1,p_2v_2\)的交点\(p_0\)

设\(p_0=p_2+kv_2\ \ u=p_2-p_1\)

\(S_1=u\times v_1,S_2=v_1\times v_2,k=S_1/S2\)

所以\(p_0=p_2+kv_2\)

\(S_1\)为\(u\)与\(v_1\)的面积,\(S_2\)为\(v_1\)与\(v_2\)的面积,按比例求得\(k\)再乘一下就求出\(p_0\)

最后统计答案

细节见代码:

#include<iostream>
#include<cstdio>
#include<string>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<queue>
#include<stack>
#include<set>
#include<bitset>
#include<vector>
#include<cstdlib>
#define QAQ int
#define TAT long long
#define OwO bool
#define ORZ double
#define F(i,j,n) for(QAQ i=j;i<=n;++i)
#define E(i,j,n) for(QAQ i=j;i>=n;--i)
#define MES(i,j) memset(i,j,sizeof(i))
#define MEC(i,j) memcpy(i,j,sizeof(j)) using namespace std;
const int N=505;
const double eps=1e-8; int n;
struct Point{
double x,y; friend Point operator - (Point a,Point b){
Point t;
t.x=a.x-b.x;t.y=a.y-b.y;
return t;
}
friend Point operator + (Point a,Point b){
Point t;
t.x=a.x+b.x;t.y=a.y+b.y;
return t;
}
friend double operator * (Point a,Point b){
return a.x*b.x+a.y*b.y;
}
friend double operator ^ (Point a,Point b){
return a.x*b.y-b.x*a.y;
}
friend Point operator * (double k,Point b){
Point t;
t.x=k*b.x;t.y=k*b.y;
return t;
}
}b[N];
int sign(double x){
return fabs(x)<=eps ? 0 : (x>0 ? 1 : -1);
}
struct Line{
Point p,v;
double poa;
friend OwO operator < (Line x,Line y){
return sign(x.poa-y.poa)==0 ? sign((x.v-x.p) ^ (y.v-x.p)) >0 : sign(x.poa-y.poa)<0;
//因为我是向量左侧求交,所以极角相同时靠左的更优,把优的放在后面,方便之后的操作 ,可以画图体会一下
}
}a[N],q[N];
int js,cnt,head,tail;
double ans; Point inter(Line a,Line b){//求交点
Point p1=a.p,p2=b.p,v1=a.v,v2=b.v;
v1=v1-p1;v2=v2-p2;
Point u=p2-p1;
Point p=p2+((u^v1)/(v1^v2))*v2;
return p;
} OwO pd(Line i,Line j,Line k){
Point p=inter(i,j);
return sign((k.v-k.p) ^ (p-k.p))<0;
} void Half_Plane(){
sort(a+1,a+js+1);//排序
F(i,1,js) {
if(sign(a[i].poa-a[i-1].poa)!=0) cnt++;
a[cnt]=a[i];//因为排过序,即使极角相同,后面的也比前面的优
}
head=1;tail=0;
q[++tail]=a[1];q[++tail]=a[2];
F(i,3,cnt){
while(head<tail&&pd(q[tail-1],q[tail],a[i])) tail--;//维护双端队列
while(head<tail&&pd(q[head+1],q[head],a[i])) head++;
q[++tail]=a[i];
}
while(head<tail&&pd(q[tail-1],q[tail],q[head])) tail--;
while(head<tail&&pd(q[head+1],q[head],q[tail])) head++;
q[tail+1]=q[head];
js=0;
F(i,head,tail) b[++js]=inter(q[i],q[i+1]);
} int main(){
scanf("%d",&n);
F(i,1,n){
int k;
scanf("%d",&k);
F(j,1,k) scanf("%lf%lf",&b[j].x,&b[j].y);
b[k+1]=b[1];
F(j,1,k) a[++js].p=b[j],a[js].v=b[j+1];
}
F(i,1,js) a[i].poa=atan2(a[i].v.y-a[i].p.y,a[i].v.x-a[i].p.x);
Half_Plane();
b[js+1]=b[1];
if(js>2) F(i,1,js) ans+=(b[i]^b[i+1]);
ans=fabs(ans)/2.0;
printf("%.3lf\n",ans);
return 0;
}

[CQOI2006]凸多边形的更多相关文章

  1. 【BZOJ 2618】 2618: [Cqoi2006]凸多边形 (半平面交)

    2618: [Cqoi2006]凸多边形 Description 逆时针给出n个凸多边形的顶点坐标,求它们交的面积.例如n=2时,两个凸多边形如下图: 则相交部分的面积为5.233. Input 第一 ...

  2. bzoj 2618 2618: [Cqoi2006]凸多边形(半平面交)

    2618: [Cqoi2006]凸多边形 Time Limit: 5 Sec  Memory Limit: 128 MBSubmit: 656  Solved: 340[Submit][Status] ...

  3. bzoj 2618: [Cqoi2006]凸多边形 [半平面交]

    2618: [Cqoi2006]凸多边形 半平面交 注意一开始多边形边界不要太大... #include <iostream> #include <cstdio> #inclu ...

  4. 【BZOJ2618】[CQOI2006]凸多边形(半平面交)

    [BZOJ2618][CQOI2006]凸多边形(半平面交) 题面 BZOJ 洛谷 题解 这个东西就是要求凸多边形的边所形成的半平面交. 那么就是一个半平面交模板题了. 这里写的是平方的做法. #in ...

  5. 2018.07.04 BZOJ 2618 Cqoi2006凸多边形(半平面交)

    2618: [Cqoi2006]凸多边形 Time Limit: 5 Sec Memory Limit: 128 MB Description 逆时针给出n个凸多边形的顶点坐标,求它们交的面积.例如n ...

  6. 洛谷 P4196 [CQOI2006]凸多边形 (半平面交)

    题目链接:P4196 [CQOI2006]凸多边形 题意 给定 \(n\) 个凸多边形,求它们相交的面积. 思路 半平面交 半平面交的模板题. 代码 #include <bits/stdc++. ...

  7. bzoj2618: [Cqoi2006]凸多边形

    Description 逆时针给出n个凸多边形的顶点坐标,求它们交的面积.例如n=2时,两个凸多边形如下图: 则相交部分的面积为5.233. Input 第一行有一个整数n,表示凸多边形的个数,以下依 ...

  8. BZOJ2618[Cqoi2006]凸多边形——半平面交

    题目描述 逆时针给出n个凸多边形的顶点坐标,求它们交的面积.例如n=2时,两个凸多边形如下图: 则相交部分的面积为5.233. 输入 第一行有一个整数n,表示凸多边形的个数,以下依次描述各个多边形.第 ...

  9. LG4196 [CQOI2006]凸多边形

    题意 题目描述 逆时针给出n个凸多边形的顶点坐标,求它们交的面积.例如n=2时,两个凸多边形如下图: 则相交部分的面积为5.233. 输入输出格式 输入格式: 第一行有一个整数n,表示凸多边形的个数, ...

  10. P4196 [CQOI2006]凸多边形 半平面交

    \(\color{#0066ff}{题目描述}\) 逆时针给出n个凸多边形的顶点坐标,求它们交的面积.例如n=2时,两个凸多边形如下图: 则相交部分的面积为5.233. \(\color{#0066f ...

随机推荐

  1. for循环,数组

    for (var a=0; a<10; a++ ) for循环 声明a为0 循环a=9时(10次) 每循环一次a的值+1; { 循环体 } var a=Attr();var a=[];数组; / ...

  2. ceil与intval区别

    float ceil(float value)ceil返回不小于value的最小整数,返回值仍是float型 int intval ( mixed value [, int base])    int ...

  3. JavaSE笔记-异常

    Java 异常 Throwable类的体系结构(一些常用的) 异常分类 checked,unchecked 区分:RuntimeException及其子类,Error类及其子类,是unchecked ...

  4. ios 积累

    1.加号 是可以通过类名直接调用这个方法,而减号则要实例化逸个对象,然后通过实例化的对象来调用该方法!! 2.(返回类型) 方法名 :(参数类型)变量名 空格 参数二名 :(参数类型) 变量名 空格 ...

  5. mysql-innoDB-多版本并发控制(MVCC)

    InnoDB的MVCC,是通过在每行记录后面保存三个隐藏的列来实现的其中的两个列一个保存了行的创建时间,一个保存行的过期时间(或删除时间).当然存储的并不是实际的时间值,而是系统版本号(system ...

  6. 1.NET是什么

  7. ClearCase新增文件

    原文地址:http://blog.csdn.net/ace_fei/article/details/7531376 大家应该都知道在clearcase上新增文件是通过以下过程来生成的: clearto ...

  8. 在vue中优雅地实现简单页面逆传值

    [需求] 要实现的需求很简单,页面从A -> B,用户在B触发操作,将一些数据带回到A页面,在网上找了好久也只看到有人问,但总找不到很好答案.要实现的效果图如下: [联想] 在 ios 开发中, ...

  9. google的grpc在golang中的使用

    GRPC是google开源的一个高性能.跨语言的RPC框架,基于HTTP2协议,基于protobuf 3.x,基于Netty 4.x. 前面写过一篇golang标准库的rpc包的用法,这篇文章接着讲一 ...

  10. nodejs环境设置理解

    本小白今天忙了一下午,就为了设置好nodejs的环境变量. 其实理解了nodejs调用的过程就会发现环境变量的设置及其简单(当然,我是边安装边想的,不知我想的对不对) 首先,npm下载的模块分为全局模 ...