[BZOJ]1093 最大半连通子图(ZJOI2007)
挺有意思的一道图论。
Description
一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:∀u,v∈V,满足u→v或v→u,即对于图中任意两点u,v,存在一条u到v的有向路径或者从v到u的有向路径。若G'=(V',E')满足V'⊆V,E'是E中所有跟V'有关的边,则称G'是G的一个导出子图。若G'是G的导出子图,且G'半连通,则称G'为G的半连通子图。若G'是G所有半连通子图
中包含节点数最多的,则称G'是G的最大半连通子图。给定一个有向图G,请求出G的最大半连通子图拥有的节点数K,以及不同的最大半连通子图的数目C。由于C可能比较大,仅要求输出C对X的余数。
Input
第一行包含两个整数N,M,X。N,M分别表示图G的点数与边数,X的意义如上文所述接下来M行,每行两个正整数a, b,表示一条有向边(a, b)。图中的每个点将编号为1,2,3…N,保证输入中同一个(a,b)不会出现两次。
Output
应包含两行,第一行包含一个整数K。第二行包含整数C Mod X。
Sample Input
6 6 20070603
1 2
2 1
1 3
2 4
5 6
6 4
Sample Output
3
3
HINT
N ≤10000, M ≤1000000,X ≤10^8。
Solution
拿到这题,我们首先思考半连通分量是个什么东西。
首先我们知道,强连通分量一定是半连通分量,
题目要求我们求最大的半连通分量,所以如果选取了一个强连通分量里的点,那么把该点所在的整个强连通分量都选进去肯定没问题,选取一个强连通分量和选取一个点是等价的。
所以我们很自然地用tarjan缩了缩点……
然后我们得到了一个带点权的拓扑图。
仔细一想,我们发现拓扑图中的半连通分量是一条链,
所以问题也就变成了找拓扑图中的最长链,并统计最长链的条数。
(这个用DP不会做你退群吧)
注意缩点之后要处理掉重边。时间复杂度O(n+m)。
#include <cstdio>
#include <algorithm>
#include <cstring>
#define MN 100005
#define MM 1000005
using namespace std;
struct edge{int nex,to;}e[MM];
struct bian{int x,y;}b[MM];
bool u[MN],ink[MN];
int low[MN],st[MN],hr[MN],bel[MN],w[MN],d[MN],q[MN],f1[MN],f2[MN];
int dfn,pin,tp,n,m,mod,hd,tl,ans1,ans2;
char B[<<],*SS,*TT; inline char getc() {return SS==TT&&(TT=(SS=B)+fread(B,,<<,stdin),SS==TT)?EOF:*SS++;}
inline int read()
{
register int n=; char c;
do c=getc(); while (c<'' || c>'');
do n=n*+c-'',c=getc(); while (c>='' && c<='');
return n;
} inline void ins(int x,int y) {e[++pin]=(edge){hr[x],y}; hr[x]=pin;} void tarjan(int x)
{
register int i,lt;
low[x]=lt=++dfn;
u[x]=ink[x]=true; st[++tp]=x;
for (i=hr[x];i;i=e[i].nex)
{
if (u[e[i].to]&&!ink[e[i].to]) continue;
if (!u[e[i].to]) tarjan(e[i].to);
low[x]=min(low[x],low[e[i].to]);
}
if (low[x]==lt)
for (;st[tp+]!=x;--tp) ink[st[tp]]=false,bel[st[tp]]=x,++w[x];
} int main()
{
register int i,x;
n=read(); m=read(); mod=read();
for (i=;i<=m;++i) b[i].x=read(),b[i].y=read(),ins(b[i].x,b[i].y);
for (i=;i<=n;++i) if (!u[i]) tarjan(i);
memset(hr,,sizeof(hr)); pin=;
for (i=;i<=m;++i)
if (bel[b[i].x]!=bel[b[i].y])
ins(bel[b[i].x],bel[b[i].y]),++d[bel[b[i].y]];
for (i=hd=;i<=n;++i) if (bel[i]==i&&!d[i]) q[++tl]=i,f1[i]=w[i],f2[i]=;
for (;hd<=tl;++hd)
{
for (x=q[hd],i=hr[x];i;i=e[i].nex)
{
if (!--d[e[i].to]) q[++tl]=e[i].to;
if (!u[e[i].to]) continue; else u[e[i].to]=false;
if (f1[x]+w[e[i].to]>f1[e[i].to]) f1[e[i].to]=f1[x]+w[e[i].to],f2[e[i].to]=f2[x];
else if (f1[x]+w[e[i].to]==f1[e[i].to]) f2[e[i].to]+=f2[x],f2[e[i].to]-=f2[e[i].to]>=mod?mod:;
}
for (i=hr[x];i;i=e[i].nex) u[e[i].to]=true;
}
for (i=;i<=n;++i)
if (f1[i]>ans1) ans1=f1[i],ans2=f2[i];
else if (f1[i]==ans1) ans2+=f2[i],ans2-=ans2>=mod?mod:;
printf("%d\n%d",ans1,ans2);
}
Last Word
有向图用tarjan缩完点得到的是拓扑图,无向图缩环会变成树(森林)。
用了n+e光速读入后立竿见影地卡到了这道题的rank2。(代码画风崩坏不可避)
[BZOJ]1093 最大半连通子图(ZJOI2007)的更多相关文章
- bzoj 1093 最大半连通子图 - Tarjan - 拓扑排序 - 动态规划
一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:?u,v∈V,满足u→v或v→u,即对于图中任意两点u,v,存在一条u到v的有向路径或者从v到u的有向路径.若G'=(V ...
- BZOJ 1093 最大半连通子图 题解
1093: [ZJOI2007]最大半连通子图 Time Limit: 30 Sec Memory Limit: 162 MBSubmit: 2767 Solved: 1095[Submit][S ...
- BZOJ 1093 最大半连通子图
缩点求最长链. #include<iostream> #include<cstdio> #include<cstring> #include<algorith ...
- Tarjan水题系列(5):最大半连通子图 [ZJOI2007 luogu P2272]
题目 大意: 缩点后转为求最长链的长度和最长链的个数 思路: 看懂题就会做系列 长度和个数都可以拓扑排序后DP求得 毕竟是2007年的题 代码: 如下 #include <cstdio> ...
- BZOJ 1093 [ZJOI2007] 最大半连通子图(强联通缩点+DP)
题目大意 题目是图片形式的,就简要说下题意算了 一个有向图 G=(V, E) 称为半连通的(Semi-Connected),如果满足图中任意两点 u v,存在一条从 u 到 v 的路径或者从 v 到 ...
- BZOJ 1093 [ZJOI2007]最大半连通子图
1093: [ZJOI2007]最大半连通子图 Time Limit: 30 Sec Memory Limit: 162 MBSubmit: 1986 Solved: 802[Submit][St ...
- bzoj 1093 [ZJOI2007]最大半连通子图(scc+DP)
1093: [ZJOI2007]最大半连通子图 Time Limit: 30 Sec Memory Limit: 162 MBSubmit: 2286 Solved: 897[Submit][St ...
- BZOJ 1093: [ZJOI2007]最大半连通子图( tarjan + dp )
WA了好多次... 先tarjan缩点, 然后题意就是求DAG上的一条最长链. dp(u) = max{dp(v)} + totu, edge(u,v)存在. totu是scc(u)的结点数. 其实就 ...
- 【刷题】BZOJ 1093 [ZJOI2007]最大半连通子图
Description 一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:?u,v∈V,满足u→v或v→u,即对于图中任意 两点u,v,存在一条u到v的有向路径或者从v到 ...
随机推荐
- IQKeyboardManager使用方法
使用方法: 将IQKeyboardManager 和 IQSegmentedNextPrevious类文件加进项目中.在AppDelegate文件中写下以下一行代码: [IQKeyBoardManag ...
- 【iOS】swift 让程序挂起后,能在后台继续运行任务
1,程序的挂起和退出 由于iOS设备资源有限.当用户点击了home键,或者另一个应用程序启动了.那么原先那个程序便进入后台被挂起,不是退出,只是停止执行代码,同时它的内存被锁定.当应用程序恢复时,它会 ...
- NOIP2016 天天爱跑步 正解
暴力移步 http://www.cnblogs.com/TheRoadToTheGold/p/6673430.html 首先解决本题应用的知识点: dfs序——将求子树的信息(树形)转化为求一段连续区 ...
- HTML,文字两端对齐
text-align: justify样式的意思是文字两端对齐,但是有时候你会发现这东西不起左右,比如在div标签中的文字. 解决方法:在div中放一个空的span标签,并使用下面的样式. .just ...
- Python内置函数(20)——hex
英文文档: hex(x) Convert an integer number to a lowercase hexadecimal string prefixed with "0x" ...
- istio入门(05)istio的架构概念2
- OAuth2.0学习(1-11)新浪开放平台微博认证-使用OAuth2.0调用微博的开放API
使用OAuth2.0调用API 使用OAuth2.0调用API接口有两种方式: 1. 直接使用参数,传递参数名为 access_token URL 1 https://api.weibo.com/2/ ...
- JDBC学习笔记 day1
JDBC的基本概念: JDBC就是java database connectivity,即java数据库连接. JDBC主要完成的几个任务分别为 与数据库建立一个连接 向数据库发送SQL语句 处理数据 ...
- NHibernate与IbatisNet的简单比较
NHibernate是当前最流行的Java O/R mapping框架Hibernate的移植版本,当前版本是1.0 rc-1.它出身于sf.net..IbatisNet是另外一种优秀的Java O/ ...
- Spring Boot面试题
Spring Boot 是微服务中最好的 Java 框架. 我们建议你能够成为一名 Spring Boot 的专家. 问题一 Spring Boot.Spring MVC 和 Spring 有什么区别 ...