Description

现在给出了一个简单无向加权图。你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树。(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同的)。由于不同的最小生成树可能很多,所以你只需要输出方案数对31011的模就可以了。

Input

第一行包含两个数,n和m,其中1<=n<=100; 1<=m<=1000; 表示该无向图的节点数和边数。每个节点用1~n的整数编号。接下来的m行,每行包含两个整数:a, b, c,表示节点a, b之间的边的权值为c,其中1<=c<=1,000,000,000。数据保证不会出现自回边和重边。注意:具有相同权值的边不会超过10条。

Output

输出不同的最小生成树有多少个。你只需要输出数量对31011的模就可以了。

Sample Input

4 6

1 2 1

1 3 1

1 4 1

2 3 2

2 4 1

3 4 1

Sample Output

8

Solution

对于不同的MST方案,相同权值的边数总是一定。因此我们可以排序后先跑一次MST并离散权值,统计出每种权值被用了多少次,然后对于每种权值暴力枚举各条边是否使用,检查合法性以及使用边数是否等于原本所使用的,乘法原理一下即可,由于有撤销操作不能够压缩路径,因此建议采用启发式合并。

时间复杂度\(O(E \log_2 E + \Sigma 2^{cnt_{v}} * \log_{2} V)\)其中\(cnt_{v}\)表示权值v在MST中的使用次数。

Code

#include <stdio.h>
#include <algorithm>
#define MN 105
#define MM 1005
#define R register
#define mod 31011
inline int read(){
R int x; R bool f; R char c;
for (f=0; (c=getchar())<'0'||c>'9'; f=c=='-');
for (x=c-'0'; (c=getchar())>='0'&&c<='9'; x=(x<<3)+(x<<1)+c-'0');
return f?-x:x;
}
int V,E,cnt,val[MM],x[MM],y[MM],rk[MM],l[MM],r[MM],v[MM],fa[MN],sz[MN],sum,ans=1,k;
inline bool cmp(int x,int y){return val[x]<val[y];}
inline int find(int x){return fa[x]==x?x:find(fa[x]);}
inline void swap(int &x,int &y){x^=y,y^=x,x^=y;}
inline void ins(int x,int y){
if (sz[x]<sz[y]) swap(x,y);
fa[y]=x;sz[x]+=sz[y];
}
inline void del(int x,int y){
if (fa[x]==y) swap(x,y);
fa[y]=y; sz[x]-=sz[y];
}
inline void dfs(int t,int no,int k){
if (no>r[t]){
sum+=(k==v[t]);
return;
}R int p=find(x[rk[no]]),q=find(y[rk[no]]);
if (p!=q){
ins(p,q);dfs(t,no+1,k+1);del(p,q);
}dfs(t,no+1,k);
}
int main(){
V=read(),E=read();for (R int i=1; i<=E; ++i) x[i]=read(),y[i]=read(),val[i]=read(),rk[i]=i;
std::sort(rk+1,rk+E+1,cmp);for (R int i=1; i<=V; ++i) fa[i]=i;
for (R int i=1; i<=E; ++i){
if (val[rk[i]]!=val[rk[i-1]]) {r[cnt]=i-1; if (k==V-1) break;l[++cnt]=i;}
R int p=find(x[rk[i]]),q=find(y[rk[i]]);
if (p!=q){ins(p,q);++v[cnt],++k;}
}if (!r[cnt]) r[cnt]=E;if (k!=V-1){puts("0");return 0;}for (R int i=1; i<=V; ++i) fa[i]=i;
for (R int i=1; i<=cnt; ++i){
sum=0;dfs(i,l[i],0);ans=ans*sum%mod;
for (R int j=l[i]; j<=r[i]; ++j){
R int p=find(x[rk[j]]),q=find(y[rk[j]]);
if (p!=q) ins(p,q);
}
}printf("%d\n",ans);
return 0;
}

【BZOJ1016】【JSOI2008】最小生成树计数的更多相关文章

  1. bzoj1016 [JSOI2008]最小生成树计数

    1016: [JSOI2008]最小生成树计数 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 3517  Solved: 1396[Submit][St ...

  2. bzoj1016: [JSOI2008]最小生成树计数(kruskal+dfs)

    1016: [JSOI2008]最小生成树计数 题目:传送门 题解: 神题神题%%% 据说最小生成树有两个神奇的定理: 1.权值相等的边在不同方案数中边数相等  就是说如果一种方案中权值为1的边有n条 ...

  3. BZOJ1016:[JSOI2008]最小生成树计数(最小生成树,DFS)

    Description 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同的 ...

  4. [bzoj1016][JSOI2008]最小生成树计数 (Kruskal + Matrix Tree 定理)

    Description 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同的 ...

  5. 【Matrix-tree定理】【并查集】【kruscal算法】bzoj1016 [JSOI2008]最小生成树计数

    题意:求一个图的最小生成树个数. 矩阵树定理:一张无向图的生成树个数 = (度数矩阵 - 邻接矩阵)的任意一个n-1主子式的值. 度数矩阵除了对角线上D[i][i]为i的度数(不计自环)外,其他位置是 ...

  6. [BZOJ1016][JSOI2008]最小生成树计数(结论题)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1016 分析: 首先有个性质:如果边集E.E'都可以表示一个图G的最小生成树(当然E和E ...

  7. [BZOJ1016] [JSOI2008] 最小生成树计数 (Kruskal)

    Description 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同的 ...

  8. 【最小生成树】BZOJ1016: [JSOI2008]最小生成树计数

    Description 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同的 ...

  9. 2018.09.24 bzoj1016: [JSOI2008]最小生成树计数(并查集+搜索)

    传送门 正解是并查集+矩阵树定理. 但由于数据范围小搜索也可以过. 我们需要知道最小生成树的两个性质: 不同的最小生成树中,每种权值的边出现的个数是确定的 不同的生成树中,某一种权值的边连接完成后,形 ...

  10. [BZOJ1016][JSOI2008]最小生成树计数 最小生成树 搜索

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1016 做这道题之前需要知道一些结论,同一个图的最小生成树中相同权值的边的个数是不会变的,如 ...

随机推荐

  1. Alpha冲刺Day11

    Alpha冲刺Day11 一:站立式会议 今日安排: 由周静平继续完成昨日第三方机构剩余的核实企业风险数据和企业风险数据详情模块 由张梨贤和黄腾飞共同完成第三方机构的分级统计展示模块 由林静开始登录/ ...

  2. iOS开发之UITextView,设置textViewplaceholder

    一.设置textView的placeholder UITextView上如何加上类似于UITextField的placeholder呢,其实在UITextView上加上一个UILabel或者UITex ...

  3. listview 与 button 焦点 在item添加下列属性

    android:descendantFocusability="blocksDescendants" http://zhaojianping.blog.51cto.com/7251 ...

  4. django处理cookie的机制

    title: django处理cookie的机制 tags: djaogo, cookie, session grammar_cjkRuby: true --- cookie的意义 在多数日常使用的网 ...

  5. 使用cxf创建webservice 出现timeOut的问题,设置spring超时时间

    <?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http://www.sp ...

  6. 说说Java代理模式

    代理实现可以分为静态代理和动态代理. 静态代理 静态代理模式其实很常见,比如买火车票这件小事:黄牛相当于是火车站的代理,我们可以通过黄牛买票,但只能去火车站进行改签和退票.在代码实现中相当于为一个委托 ...

  7. redis入门(06)各种类型的操作命令

    Redis 字符串命令下表列出了常用的 redis 字符串命令:序号 命令及描述1 SET key value 设置指定 key 的值2 GET key 获取指定 key 的值.3 GETRANGE ...

  8. Linux实战案例(1)CentOS修改主机名(hostname)

    1.临时修改主机名 显示主机名: oracle@localhost:~$ hostname localhost 修改主机名: oracle@localhost:~$ sudo hostname orc ...

  9. spring-oauth-server实践:授权方式三:PASSWORD模式下 authorities:ROLE_{user.privillege}, ROLE_USER

    一.数据库配置 1.oauth_client_details 2.user_ 3.user_privillege 二.password模式 授权过程 1.授权者granter和请求参数 Resourc ...

  10. 新概念英语(1-71)He's awful!

    He's awful!How did Pauline answer the telephone at the nine o'clock?A:What's Ron Marston like, Pauli ...