题面

传送门

Sol

题目要求\(\sum_{i=1}^{n!}[gcd(i, m!)==1]\)

设\(N=n!,M=m!\),莫比乌斯反演一波

就变成了\(\sum_{d|M}\mu(d)\frac{N}{d}\)

因为\(M|N\)所以\(d|N\)

而有个定理\(\sum_{d|M}\frac{\mu(d)}{d}=\frac{\varphi(M)}{M}\)

那么就是求\(\frac{\varphi(M)}{M}*N\)

就是\(\varphi(m!)*\frac{n!}{m!}\)

而\(\varphi(m!)=\varphi(m)*(m-1)!\)

化简

\[ans=n!*\Pi_{P|m}(1-\frac{1}{P}) \ \ \ \ (P为质数) \\
=n!*\Pi_{P|m}\frac{P-1}{P}
\]

那就变成SB题了

预处理就好了

# include <bits/stdc++.h>
# define IL inline
# define RG register
# define Fill(a, b) memset(a, b, sizeof(a))
using namespace std;
typedef long long ll;
const int _(1e7 + 1); IL ll Read(){
RG char c = getchar(); RG ll x = 0, z = 1;
for(; c < '0' || c > '9'; c = getchar()) z = c == '-' ? -1 : 1;
for(; c >= '0' && c <= '9'; c = getchar()) x = (x << 1) + (x << 3) + (c ^ 48);
return x * z;
} int n, m, Zsy, prime[_], num, fac[_], inv[_], id[_];
bool isprime[_]; IL int Pow(RG ll x, RG ll y){
RG ll ret = 1;
for(; y; y >>= 1, x = x * x % Zsy) if(y & 1) ret = ret * x % Zsy;
return ret;
} IL void Sieve(){
isprime[1] = 1; fac[1] = 1;
for(RG int i = 2; i < _; ++i){
if(!isprime[i]) prime[++num] = i , inv[num] = Pow(i, Zsy - 2);
for(RG int j = 1; j <= num && i * prime[j] < _; ++j){
isprime[i * prime[j]] = 1;
if(!(i % prime[j])) break;
}
fac[i] = 1LL * fac[i - 1] * i % Zsy;
}
for(RG int i = 1; i < num; ++i)
for(RG int j = prime[i]; j < prime[i + 1]; ++j) id[j] = i;
inv[0] = prime[0] = 1;
for(RG int i = 1; i <= num; ++i){
prime[i] = 1LL * (prime[i] - 1) * prime[i - 1] % Zsy;
inv[i] = 1LL * inv[i] * inv[i - 1] % Zsy;
}
} IL int Calc(){ return 1LL * fac[n] * prime[id[m]] % Zsy * inv[id[m]] % Zsy; } int main(RG int argc, RG char* argv[]){
RG int T = Read(); Zsy = Read();
Sieve();
while(T--){
n = Read(); m = Read();
printf("%d\n", Calc());
}
return 0;
}

[SDOI2008]沙拉公主的困惑的更多相关文章

  1. Bzoj 2186: [Sdoi2008]沙拉公主的困惑 乘法逆元,线性筛,欧拉函数,数论

    2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 2560  Solved: 857[Submit][St ...

  2. 数学(逆元):BZOJ 2186: [Sdoi2008]沙拉公主的困惑

    2186: [Sdoi2008]沙拉公主的困惑 Description 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M!互质的钞 ...

  3. 洛咕 P2155 [SDOI2008]沙拉公主的困惑

    洛咕 P2155 [SDOI2008]沙拉公主的困惑 有个结论,就是如果\(gcd(a,b)=1\),那么\(gcd(a+kb,b)=1\).证明比较显然. 所以这个题目要问的\(n!\)就可以分成\ ...

  4. BZOJ2186: [Sdoi2008]沙拉公主的困惑(求[1,N!]与M!互素的个数)(线性筛)

    2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 6103  Solved: 2060[Submit][S ...

  5. BZOJ2186 [Sdoi2008]沙拉公主的困惑 【数论,欧拉函数,线性筛,乘法逆元】

    2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec  Memory Limit: 259 MB Submit: 5003  Solved: 1725 [Submit] ...

  6. 【BZOJ 2186】 2186: [Sdoi2008]沙拉公主的困惑 (欧拉筛,线性求逆元)

    2186: [Sdoi2008]沙拉公主的困惑 Description 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M!互质的钞 ...

  7. 【bzoj2186】[Sdoi2008]沙拉公主的困惑

    2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 3303  Solved: 1129[Submit][S ...

  8. 【BZOJ2186】[Sdoi2008]沙拉公主的困惑 线性筛素数

    [BZOJ2186][Sdoi2008]沙拉公主的困惑 Description 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M! ...

  9. 【bzoj2186】: [Sdoi2008]沙拉公主的困惑 数论-欧拉函数

    [bzoj2186]: [Sdoi2008]沙拉公主的困惑 考虑当 gcd(a,b)=1 则 gcd(nb+a,b)=1 所以[1,N!]与M!互质的个数就是 筛出[1,M]所有的素数p[i] 以及逆 ...

  10. 洛谷 P2155 [SDOI2008]沙拉公主的困惑 解题报告

    P2155 [SDOI2008]沙拉公主的困惑 题目描述 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为\(1\)到\(N\)的阶乘,但是,政府只发行编号与\(M!\ ...

随机推荐

  1. shell 脚本中执行SQL语句 -e "..."

    /usr/local/mysql/bin/mysql -uroot -p123456 -e " use faygo source faygo.sql select * from devqui ...

  2. Filezilla Server 出现Error, could not connect to server解决办法

    打开任务管理器:Win+R:services.msc找到Filezilla Server并启动服务

  3. mybatis自动生成mapper,dao映射文件

    利用Mybatis-Generator来帮我们自动生成mapper.xml文件,dao文件,model文件. 1.所需文件 关于Mybatis-Generator的下载可以到这个地址:https:// ...

  4. Halcon一日一练:图像拼接技术

    图像拼接技术就是针对同一场景的一系列图片,根据图片的特征,比如位置,重叠部分等,拼接成一张大幅的宽视角的图像. 图像拼接要求拼接后图像最大程度的与原图一致,失真尽可能的小,并且要尽量做到天衣无缝即没有 ...

  5. mac中的myeclipse的控制台中文乱码问题解决办法

    之前写java用到控制台的主要是字符和数字,中文输入貌似真的还没用过,所以就遇到了一个悲剧的老问题,估计每个程序员都会遇到——中文乱码. 用的是MyEclipse开发环境,Window->Gen ...

  6. 沉淀,再出发——安装windows10和ubuntu kylin15.04双系统心得体会

    安装windows10和ubuntu kylin15.04双系统心得体会 一.安装次序      很简单,两种安装次序,"先安装windows后安装linux:先安装linux后安装wind ...

  7. Django静态文件路径设置

    提示 : Error fetching command 'collectstatic': You're using the staticfiles app without having set the ...

  8. 如何使用 window api 转换字符集?

    //宽字符转多字节 std::string W2A(const std::wstring& utf8) { int buffSize = WideCharToMultiByte(CP_ACP, ...

  9. (2018干货系列一)最新Java学习路线整合

    怎么学Java Java是一门面向对象编程语言,不仅吸收了C++语言的各种优点,还摒弃了C++里难以理解的多继承.指针等概念,因此Java语言具有功能强大和简单易用两个特征. 话不多说,直接上干货: ...

  10. REALTEK 刷机方法 法

    REALTEK 是通用板最多的IC 方案之一,什么常说的2025 2270 2023 2033 2525 2545 2660 2280 2662 2670 2672 2674  2661  2668 ...