【SPOJ】Substrings(后缀自动机)

题面

Vjudge

题意:给定一个长度为\(len\)的串,求出长度为1~len的子串中,出现最多的出现了多少次

题解

出现次数很好处理,就是\(right/endpos\)集合的大小

那么,直接构建\(SAM\)

求出每个位置的\(right\)集合大小

直接更新每个节点的\(longest\)就行了

最后短的可以由长的更新过来就好

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define ll long long
#define RG register
#define MAX 2001000
inline int read()
{
RG int x=0,t=1;RG char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
char ch[MAX];
struct Node
{
int son[26];
int ff,len;
}t[MAX<<1];
int size[MAX];
int tot=1,last=1,c[MAX],a[MAX],ans[MAX];
void extend(int c)
{
int p=last,np=++tot;last=np;
t[np].len=t[p].len+1;
while(p&&!t[p].son[c])t[p].son[c]=np,p=t[p].ff;
if(!p)t[np].ff=1;
else
{
int q=t[p].son[c];
if(t[q].len==t[p].len+1)t[np].ff=q;
else
{
int nq=++tot;
t[nq]=t[q];
t[nq].len=t[p].len+1;
t[q].ff=t[np].ff=nq;
while(p&&t[p].son[c]==q)t[p].son[c]=nq,p=t[p].ff;
}
}
size[np]=1;
}
int main()
{
scanf("%s",ch+1);
int l=strlen(ch+1);
for(int i=1;i<=l;++i)extend(ch[i]-97);
for(int i=1;i<=tot;++i)c[t[i].len]++;
for(int i=1;i<=tot;++i)c[i]+=c[i-1];
for(int i=1;i<=tot;++i)a[c[t[i].len]--]=i;
for(int i=tot;i;--i)
{
int u=a[i];
size[t[u].ff]+=size[u];
ans[t[u].len]=max(ans[t[u].len],size[u]);
}
for(int i=l-1;i;--i)ans[i]=max(ans[i],ans[i+1]);
for(int i=1;i<=l;++i)printf("%d\n",ans[i]);
return 0;
}

【SPOJ】Substrings(后缀自动机)的更多相关文章

  1. ●SPOJ 8222 NSUBSTR–Substrings(后缀自动机)

    题链: http://www.spoj.com/problems/NSUBSTR/ 题解: 后缀自动机的水好深啊!懂不了相关证明,带着结论把这个题做了.看来这滩深水要以后再来了. 本题要用到一个叫 R ...

  2. SPOJ NSUBSTR Substrings 后缀自动机

    人生第一道后缀自动机,总是值得纪念的嘛.. 后缀自动机学了很久很久,先是看CJL的论文,看懂了很多概念,关于right集,关于pre,关于自动机的术语,关于为什么它是线性的结点,线性的连边.许多铺垫的 ...

  3. SPOJ NSUBSTR Substrings ——后缀自动机

    建后缀自动机 然后统计次数,只需要算出right集合的大小即可, 然后更新f[l[i]]和rit[i]取个max 然后根据rit集合短的一定包含长的的性质,从后往前更新一遍即可 #include &l ...

  4. 【CF316G3】Good Substrings 后缀自动机

    [CF316G3]Good Substrings 题意:给出n个限制(p,l,r),我们称一个字符串满足一个限制当且仅当这个字符串在p中的出现次数在[l,r]之间.现在想问你S的所有本质不同的子串中, ...

  5. SPOJ NSUBSTR (后缀自动机)

    SPOJ NSUBSTR Problem : 给一个长度为n的字符串,要求分别输出长度为1~n的子串的最多出现次数. Solution :首先对字符串建立后缀自动机,在根据fail指针建立出后缀树,对 ...

  6. SPOJ LCS 后缀自动机

    用后缀自动机求两个长串的最长公共子串,效果拔群.多样例的时候memset要去掉. 解题思路就是跟CLJ的一模一样啦. #pragma warning(disable:4996) #include< ...

  7. SPOJ8222 NSUBSTR - Substrings(后缀自动机)

    You are given a string S which consists of 250000 lowercase latin letters at most. We define F(x) as ...

  8. SPOJ - LCS 后缀自动机入门

    LCS - Longest Common Substring A string is finite sequence of characters over a non-empty finite set ...

  9. SPOJ LCS 后缀自动机找最大公共子串

    这里用第一个字符串构建完成后缀自动机以后 不断用第二个字符串从左往右沿着后缀自动机往前走,如能找到,那么当前匹配配数加1 如果找不到,那么就不断沿着后缀树不断往前找到所能匹配到当前字符的最大长度,然后 ...

  10. SPOJ 7258 (后缀自动机)

    转载:http://hzwer.com/4492.html 给一个长度不超过90000的串S,每次询问它的所有不同子串中,字典序第K小的,询问不超过500个. 搞出后缀自动机 dp处理出每个点往下走能 ...

随机推荐

  1. 高可用Redis服务架构分析与搭建

    基于内存的Redis应该是目前各种web开发业务中最为常用的key-value数据库了,我们经常在业务中用其存储用户登陆态(Session存储),加速一些热数据的查询(相比较mysql而言,速度有数量 ...

  2. Jenkins配置备份恢复插件ThinBackup

    一.系统管理-管理插件-找到ThinBackup并安装 二.系统管理-找到ThinBackup-点击Setting进行设置 第一个参数备份目录是必选,其它可选,点保存. 三.保存后返回到ThinBac ...

  3. php分布式redis实现session共享

    方法一:找到配置文件php.ini,修改为下面内容,保存并重启服务 session.save_handler = redis session.save_path = "tcp://127.0 ...

  4. 小技巧:selenium java中如何使用chrome默认的profile

    使用浏览器默认的profile可以在一定程度上实现免登录的效果,另外默认的profile中很多文件都被缓存了,也有利于加快测试的速度 System.setProperty("webdrive ...

  5. SQL替换语句 批量修改、增加、删除字段内容

    sql替换语句,用该命令可以整批替换某字段的内容,也可以批量在原字段内容上加上或去掉字符. 命令总解:update 表的名称 set 此表要替换的字段名=REPLACE(此表要替换的字段名, '原来内 ...

  6. php 快排

    <?php $arr =array(3,1,5,67,8,7,9,9); function qsort(&$arr,$head,$tail){ if($head>=$tail){ ...

  7. 剑指offer 第一个只出现一次的字符 hash

    思路:i表示字符的ASCII码值,cntp[i]表示字符出现的次数. AC代码 class Solution { public: int FirstNotRepeatingChar(string st ...

  8. css y轴溢出滚动条,x轴溢出显示

    这个是我工作中遇到的一个问题,困扰了我好几天,彻底理解了什么叫思路很重要. 黄色盒子里的内容是要超出出现滚动条的,红色的方块是根据另外的元素去定位的,于是呢 我就加上了 overflow-y:auto ...

  9. 快了快了,你的 MacBook Pro 和 FineUICore!

    着玻璃窗,看到星巴克里那帮人拿着MacBook喝咖啡,你是不是要默念一遍:这帮傻叉,就爱装逼! 不过话说回来,你想不想尝试下这个傻叉的感觉? 是时候了,给自己一个理由,拥有自己的 MacBook Pr ...

  10. 浅谈JavaScript位操作符

    因为ECMAscript中所有数值都是以IEEE-75464格式存储,所以才会诞生了位操作符的概念. 位操作符作用于最基本的层次上,因为数值按位存储,所以位操作符的作用也就是操作数值的位.不过位操作符 ...