120. Triangle(中等)
Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.
For example, given the following triangle
[
[2],
[3,4],
[6,5,7],
[4,1,8,3]
]
The minimum path sum from top to bottom is 11 (i.e., 2 + 3 + 5 + 1 = 11).
Note:
Bonus point if you are able to do this using only \(O(n)\) extra space, where n is the total number of rows in the triangle.
先说一个坑:本题绝不是找每行最小元素,然后把它们加起来那么简单.原因是这些元素是有路径的!看下例:
[
[-1],
[2, 3],
[1,-1,-3],
]
结果应为 -1 + 2 + -1 = 0, 而不是 -1 + 2 + -3 = -2.
idea来自 http://www.cnblogs.com/liujinhong/p/5551932.html 中的图片,感谢这位同学.
本 code 属于 方法一: 自上而下,破坏原数组A. \(O(n^2)\) time, \(O(1)\) space
另一种方法 方法二: 自下而上,不破坏数组A. 维护一个长度为 n 的 1-dim 数组. \(O(n^2)\) time, \(O(n)\) space.
方法一的解题思路(请务必参照上面网址中的图片):
从上至下,将值按照"路径"加到下一层
除了A[0][0]这种情况外,还会遇到下列三种(注意判断条件)情况,共 4 cases:
case 1: left, right 上邻居都存在
case 2: left上不存在, right上存在
case 3: left上存在, right上不存在
case 4: A[0][0](它没left上 和 right上邻居), 我们 do nothing, 保留A[0][0]数值不变.
下面的图可以让我们看清上面 4 cases 的判断条件:
下面是元素索引:
[
[0,0],
[1,0],[1,1] , [row-1,col-1],[row-1,col],
[2,0],[2,1],[2,2], [row, col]
[3,0],[3,1],[3,2],[3,3]
]
人家想法,自个代码(方法一,破坏原数组):
\(O(n^2)\) time, \(O(1)\) space
// idea来自 http://www.cnblogs.com/liujinhong/p/5551932.html
// 本 code 属于方法一:自上而下,破坏原数组A. $O(n^2)$ time, $O(1)$ space
// 另一种方法方法二:自下而上,不破坏数组A. 维护一个长度为 n 的 1-dim 数组.
// $O(n^2)$ time, $O(n)$ space.
int minimumTotal(vector<vector<int>>& A) {
const int n = A.size();
if (n == 0) return 0;
// 从上至下,将值按照"路径"加到下一层
// 除了A[0][0]这种情况外,还会遇到下列三种情况,共 4 cases.
for (int row = 0; row < n; row++) {
for (int col = 0; col <= row; col++) {
if ((row - 1 >= 0) && (col - 1 >= 0) && (col <= row - 1)) {
// case 1: left, right 上邻居都存在
int mi = min(A[row - 1][col - 1], A[row - 1][col]);
A[row][col] += mi;
} else if ((row - 1 >= 0) && (col - 1 < 0) && (col <= row - 1)) {
// case 2: left上不存在, right上存在
A[row][col] += A[row - 1][col];
} else if ((row - 1 >= 0) && (col - 1 >= 0) && (col > row - 1)) {
// case 3: left上存在, right上不存在
A[row][col] += A[row - 1][col - 1];
}
// case 4: A[0][0](它没left上 和 right上邻居)
// do nothing, 保留A[0][0]数值不变.
}
}
// 返回A中最下面的一行(A[n-1])最小元素
int res = INT_MAX;
for (int i = 0; i < A[n - 1].size(); i++) {
res = min(res, A[n - 1][i]);
}
return res;
}
方法二:
自下而上,不破坏数组A.
关键是找本层和上一层元素的关系,那就是 temp[j] = A[i,j] + min(temp[j], temp[j+1]).
\(O(n^2)\) time, \(O(n)\) space.
// 方法二:
// 自下而上,不破坏数组A. 维护一个长度为 n 的 1-dim 数组.
// $O(n^2)$ time, $O(n)$ space.
int minimumTotal(vector<vector<int>>& A) {
const int n = A.size();
if (n == 0)
return 0;
if (n == 1)
return A[0][0];
vector<int> temp;
// A 最后一行存入temp
for (int j = 0; j < n; j++)
temp.push_back(A[n - 1][j]);
// 从倒数第二行到上按路径元素取min的,相加
// 对应关系:
// A[2, 1]
// temp[1] temp[1+1]
for (int i = n - 2; i >= 0; i--) {
for (int j = 0; j <= i; j++) {
int smal = min(temp[j], temp[j + 1]);
// 若当前使用temp[0], temp[1]
// temp[0] 被改, 但不影响下次使用temp[1], temp[2]
temp[j] = A[i][j] + smal;
}
}
return temp[0];
}
120. Triangle(中等)的更多相关文章
- leetcode 118. Pascal's Triangle 、119. Pascal's Triangle II 、120. Triangle
118. Pascal's Triangle 第一种解法:比较麻烦 https://leetcode.com/problems/pascals-triangle/discuss/166279/cpp- ...
- 【LeetCode】120. Triangle 解题报告(Python)
[LeetCode]120. Triangle 解题报告(Python) 作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 题目地址htt ...
- LeetCode - 120. Triangle
Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent n ...
- [LeetCode]题解(python):120 Triangle
题目来源 https://leetcode.com/problems/triangle/ Given a triangle, find the minimum path sum from top to ...
- leetcode 120 Triangle ----- java
Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent n ...
- 【LeetCode】120 - Triangle
原题:Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacen ...
- 120. Triangle
题目: Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjace ...
- LeetCode OJ 120. Triangle
Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent n ...
- LeetCode 120. Triangle (三角形)
Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent n ...
随机推荐
- maven常见问题处理(3-3)Gradle编译时下载依赖失败解决方法
Gradle编译时在本地仓库中如果没有发现依赖,就会从远程仓库中下载, 默认的远程仓库为 mavenCentral(),即 http://repo1.maven.org/maven2/往往访问速度特别 ...
- maven环境变量的配置及+eclipse的配置使用
1. 环境搭建(Maven+eclipse) 进入CMD 输入: mvn –v 查看是否配置好 输入: mvn -version 可以查看其安装的版本 在eclipse中配置maven: 在h ...
- Mybatis自动生成Xml文件,针对字段类型为text等会默认产生XXXXWithBlobs的方法问题
默认情况下产生的Mapper.xml里面存在: 需要修改generatorConfiguration.xml,里面的table加属性,如: <table domainObjectName=&qu ...
- Python:使用youtube-dl+ffmpeg+FQ软件下载youtube视频
声明:本文所述内容都是从http://blog.csdn.net/u011475134/article/details/71023612博文中学习而来. 背景: 一同学想通过FQ软件下载一些youtu ...
- 并发容器和框架之ConcurrentHashMap
了解HashMap的人都知道HashMap是线程不安全的(多线程下的put方法达到一定大小,引发rehash,导致闭链,最终占满CPU),同时线程安全的HashTable效率又令人望而却步(每个方法都 ...
- POJ-3069 Saruman's Army---区间选点
题目链接: https://vjudge.net/problem/POJ-3069 题目大意: 在一条直线上,有n个点.从这n个点中选择若干个,给他们加上标记.对于每一个点,其距离为R以内的区域里必须 ...
- 原生js的一些研究和总结(1)
数据类型 基本类型值包括: undefined,null,Boolean,Number和String,这些类型分别在内存中占有固定的大小空间,它们的值保存在栈空间,我们通过按值来访问的. 引用类型包括 ...
- jacascript AJAX 学习
前言:这是笔者学习之后自己的理解与整理.如果有错误或者疑问的地方,请大家指正,我会持续更新! AJAX 是 asynchronous javascript and XML 的简写,就是异步的 java ...
- 【转载】Linux下安装、配置、启动Apache
原文地址:http://www.cnblogs.com/zhuque/archive/2012/11/03/2763352.html 安装Apache前准备: 1.检查该环境中是否已经存在httpd服 ...
- WPF中自定义GridLengthAnimation
需求 我们想在编辑一个列表中某一个条目时,将编辑的详情内容也放置当前面,比如右侧. 可以通过将一个Grid,分成两个Cloumn,动态调整两个Cloumn的Width,就可以实现这个需求. 我们知道, ...