Hive函数:CUME_DIST,PERCENT_RANK
参考自:大数据田地http://lxw1234.com/archives/2015/04/185.htm
数据准备:
d1,user1,1000
d1,user2,2000
d1,user3,3000
d2,user4,4000
d2,user5,5000 CREATE EXTERNAL TABLE test_data (
dept STRING,
userid string,
sal INT
) ROW FORMAT DELIMITED
FIELDS TERMINATED BY ','
stored as textfile location '/user/jc_rc_ftp/test_data'; hive> select * from test_data;
+-----------------+-------------------+----------------+--+
| test_data.dept | test_data.userid | test_data.sal |
+-----------------+-------------------+----------------+--+
| d1 | user1 | 1000 |
| d1 | user2 | 2000 |
| d1 | user3 | 3000 |
| d2 | user4 | 4000 |
| d2 | user5 | 5000 |
+-----------------+-------------------+----------------+--+
CUME_DIST
–CUME_DIST 小于等于当前值的行数/分组内总行数
–比如,统计小于等于当前薪水的人数,所占总人数的比例
SELECT
dept,
userid,
sal,
CUME_DIST() OVER(ORDER BY sal) AS rn1,
CUME_DIST() OVER(PARTITION BY dept ORDER BY sal) AS rn2
FROM test_data;
+-------+---------+-------+------+---------------------+--+
| dept | userid | sal | rn1 | rn2 |
+-------+---------+-------+------+---------------------+--+
| d1 | user1 | 1000 | 0.2 | 0.3333333333333333 |
| d1 | user2 | 2000 | 0.4 | 0.6666666666666666 |
| d1 | user3 | 3000 | 0.6 | 1.0 |
| d2 | user4 | 4000 | 0.8 | 0.5 |
| d2 | user5 | 5000 | 1.0 | 1.0 |
+-------+---------+-------+------+---------------------+--+
rn1: 没有partition,所有数据均为1组,总行数为5,
第一行:小于等于1000的行数为1,因此,1/5=0.2
第三行:小于等于3000的行数为3,因此,3/5=0.6
rn2: 按照部门分组,dpet=d1的行数为3,
第二行:小于等于2000的行数为2,因此,2/3=0.6666666666666666
PERCENT_RANK
–PERCENT_RANK 分组内当前行的RANK值-1/分组内总行数-1
应用场景不了解,可能在一些特殊算法的实现中可以用到吧。
SELECT
dept,
userid,
sal,
PERCENT_RANK() OVER(ORDER BY sal) AS rn1, --分组内
RANK() OVER(ORDER BY sal) AS rn11, --分组内RANK值
SUM(1) OVER(PARTITION BY NULL) AS rn12, --分组内总行数
PERCENT_RANK() OVER(PARTITION BY dept ORDER BY sal) AS rn2
FROM test_data;
+-------+---------+-------+-------+-------+-------+------+--+
| dept | userid | sal | rn1 | rn11 | rn12 | rn2 |
+-------+---------+-------+-------+-------+-------+------+--+
| d1 | user1 | 1000 | 0.0 | 1 | 5 | 0.0 |
| d1 | user2 | 2000 | 0.25 | 2 | 5 | 0.5 |
| d1 | user3 | 3000 | 0.5 | 3 | 5 | 1.0 |
| d2 | user4 | 4000 | 0.75 | 4 | 5 | 0.0 |
| d2 | user5 | 5000 | 1.0 | 5 | 5 | 1.0 |
+-------+---------+-------+-------+-------+-------+------+--+ 这样只要排序字段为null,就会放在最后,而不会影响排序结果 rn1: rn1 = (rn11-1) / (rn12-1)
第一行,(1-1)/(5-1)=0/4=0
第二行,(2-1)/(5-1)=1/4=0.25
第四行,(4-1)/(5-1)=3/4=0.75
rn2: 按照dept分组,
dept=d1的总行数为3
第一行,(1-1)/(3-1)=0
第三行,(3-1)/(3-1)=1
Hive函数:CUME_DIST,PERCENT_RANK的更多相关文章
- hive函数参考手册
hive函数参考手册 原文见:https://cwiki.apache.org/confluence/display/Hive/LanguageManual+UDF 1.内置运算符1.1关系运算符 运 ...
- Hive函数以及自定义函数讲解(UDF)
Hive函数介绍HQL内嵌函数只有195个函数(包括操作符,使用命令show functions查看),基本能够胜任基本的hive开发,但是当有较为复杂的需求的时候,可能需要进行定制的HQL函数开发. ...
- 大数据入门第十一天——hive详解(三)hive函数
一.hive函数 1.内置运算符与内置函数 函数分类: 查看函数信息: DESC FUNCTION concat; 常用的分析函数之rank() row_number(),参考:https://www ...
- Hadoop生态圈-Hive函数
Hadoop生态圈-Hive函数 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任.
- Hive(四)hive函数与hive shell
一.hive函数 1.hive内置函数 (1)内容较多,见< Hive 官方文档> https://cwiki.apache.org/confluence/displ ...
- Hive入门笔记---2.hive函数大全
Hive函数大全–完整版 现在虽然有很多SQL ON Hadoop的解决方案,像Spark SQL.Impala.Presto等等,但就目前来看,在基于Hadoop的大数据分析平台.数据仓库中,Hiv ...
- 【Hive五】Hive函数UDF
Hive函数 系统自带的函数 查看系统自带的函数 查看系统自带的函数 show functions; 显示自带的函数的用法 desc function upper; 详细显示自带的函数的用法 desc ...
- Hive函数大全-完整版
现在虽然有很多SQL ON Hadoop的解决方案,像Spark SQL.Impala.Presto等等,但就目前来看,在基于Hadoop的大数据分析平台.数据仓库中,Hive仍然是不可替代的角色.尽 ...
- 【翻译】Flink Table Api & SQL — Hive —— Hive 函数
本文翻译自官网:Hive Functions https://ci.apache.org/projects/flink/flink-docs-release-1.9/dev/table/hive/h ...
- hive函数之数学函数
hive函数之数学函数 round(double d)--返回double型d的近似值(四舍五入),返回bigint型: round(double d,int n)--返回保留double型d的n ...
随机推荐
- 【Java一看就懂】浅克隆和深克隆
一.何为克隆 在Java的体系中,数据类型分为基本数据类型和引用数据类型. 基本数据类型包括byte,short,int,long,float,double,boolean,char 8种,其克隆可通 ...
- 吐槽net下没有靠谱的FastDFS的sdk之使用thrift实现JAVA和C#互通
事情是这样的,在一个新项目中引入了fastdfs,用这玩意做一些小数据的存储还是很方便的,然后在nuget上就找一个对接FastDFS的sdk,如下图: 一眼就看到了这个top1的sdk,应该会比较靠 ...
- Docker + webpack 打包前端项目
码云代码地址: https://gitee.com/caonimashi/docker_deployment_front_end 构建基础镜像: 1.下载一个 Apline Linux 操作系统 ...
- linux --> 为什么寄存器比内存快?
为什么寄存器比内存快 计算机的存储层次(memory hierarchy)之中,寄存器(register)最快,内存其次,最慢的是硬盘. 原因一:距离不同 距离不是主要因素,但是最好懂,所以放在最前面 ...
- Algorithm --> 最长公共子序列(LCS)
一.什么是最长公共子序列 什么是最长公共子序列呢?举个简单的例子吧,一个数列S,若分别是两个或多个已知序列的子序列,且是所有符合条件序列中最长的,则S称为已知序列的最长公共子序列. 举例如 ...
- Eclipse中的所有快捷键列表
Eclipse中的所有快捷键列表: Ctrl+1 快速修复(最经典的快捷键,就不用多说了) Ctrl+D: 删除当前行 Ctrl+Alt+↓ 复制当前行到下一行(复制增加) Ctrl+Alt+↑ 复制 ...
- 理解JAVA内存模型
实际上java内存模型是如上图所示一样 每个线程有自己的栈内存,存放共享对象的副本,本地变量 每个线程自己的本地变量是不可见的,但是共享对象对每个线程都是可见的. 如果想实现线程通信的话, 线程对共享 ...
- PHP 相对完整的分页
效果链接http://love.bjxxw.com/oejiaoyou/pubu/zhaopian.php php 分页 <?php /* * * * 说明 吉海波 2015/9/17 * $p ...
- C语言嵌套循环作业
一.PTA实验作业 题目1:7-4 换硬币 1. 本题PTA提交列表 2. 设计思路 1.定义fen5:5分硬币数量, fen2:2分硬币数量, fen1:1分硬币数量, total:硬币总数量,co ...
- GPUImage实战问题解决
在项目中遇到了使用完GPUImage以后,内存不释放的问题,翻阅官方API,找到了解决方法: deinit{ GPUImageContext.sharedImageProcessingContext( ...