Simple tutorial for using TensorFlow to compute polynomial regression
"""Simple tutorial for using TensorFlow to compute polynomial regression.
Parag K. Mital, Jan. 2016"""
# %% Imports
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
# %% Let's create some toy data
plt.ion()
n_observations = 100
fig, ax = plt.subplots(1, 1)
xs = np.linspace(-3, 3, n_observations)
ys = np.sin(xs) + np.random.uniform(-0.5, 0.5, n_observations)
ax.scatter(xs, ys)
fig.show()
plt.draw()
# %% tf.placeholders for the input and output of the network. Placeholders are
# variables which we need to fill in when we are ready to compute the graph.
X = tf.placeholder(tf.float32)
Y = tf.placeholder(tf.float32)
# %% Instead of a single factor and a bias, we'll create a polynomial function
# of different polynomial degrees.  We will then learn the influence that each
# degree of the input (X^0, X^1, X^2, ...) has on the final output (Y).
Y_pred = tf.Variable(tf.random_normal([1]), name='bias')
for pow_i in range(1, 5):
    W = tf.Variable(tf.random_normal([1]), name='weight_%d' % pow_i)
    Y_pred = tf.add(tf.mul(tf.pow(X, pow_i), W), Y_pred)
# %% Loss function will measure the distance between our observations
# and predictions and average over them.
cost = tf.reduce_sum(tf.pow(Y_pred - Y, 2)) / (n_observations - 1)
# %% if we wanted to add regularization, we could add other terms to the cost,
# e.g. ridge regression has a parameter controlling the amount of shrinkage
# over the norm of activations. the larger the shrinkage, the more robust
# to collinearity.
# cost = tf.add(cost, tf.mul(1e-6, tf.global_norm([W])))
# %% Use gradient descent to optimize W,b
# Performs a single step in the negative gradient
learning_rate = 0.01
optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost)
# %% We create a session to use the graph
n_epochs = 1000
with tf.Session() as sess:
    # Here we tell tensorflow that we want to initialize all
    # the variables in the graph so we can use them
    sess.run(tf.initialize_all_variables())
    # Fit all training data
    prev_training_cost = 0.0
    for epoch_i in range(n_epochs):
        for (x, y) in zip(xs, ys):
            sess.run(optimizer, feed_dict={X: x, Y: y})
        training_cost = sess.run(
            cost, feed_dict={X: xs, Y: ys})
        print(training_cost)
        if epoch_i % 100 == 0:
            ax.plot(xs, Y_pred.eval(
                feed_dict={X: xs}, session=sess),
                    'k', alpha=epoch_i / n_epochs)
            fig.show()
            plt.draw()
        # Allow the training to quit if we've reached a minimum
        if np.abs(prev_training_cost - training_cost) < 0.000001:
            break
        prev_training_cost = training_cost
ax.set_ylim([-3, 3])
fig.show()
plt.waitforbuttonpress()
												
											Simple tutorial for using TensorFlow to compute polynomial regression的更多相关文章
- Simple tutorial for using TensorFlow to compute a linear regression
		
"""Simple tutorial for using TensorFlow to compute a linear regression. Parag K. Mita ...
 - NNs(Neural Networks,神经网络)和Polynomial Regression(多项式回归)等价性之思考,以及深度模型可解释性原理研究与案例
		
1. Main Point 0x1:行文框架 第二章:我们会分别介绍NNs神经网络和PR多项式回归各自的定义和应用场景. 第三章:讨论NNs和PR在数学公式上的等价性,NNs和PR是两个等价的理论方法 ...
 - TensorFlow实战之Softmax Regression识别手写数字
		
关于本文说明,本人原博客地址位于http://blog.csdn.net/qq_37608890,本文来自笔者于2018年02月21日 23:10:04所撰写内容(http://blog.c ...
 - machine learning (6)---how to choose features, polynomial regression
		
how to choose features, polynomial regression:通过定义更适合我们的feature,选择更好的模型,使我们的曲线与数据更好的拟合(而不仅仅是一条直线) 可以 ...
 - 机器学习-TensorFlow建模过程  Linear Regression线性拟合应用
		
TensorFlow是咱们机器学习领域非常常用的一个组件,它在数据处理,模型建立,模型验证等等关于机器学习方面的领域都有很好的表现,前面的一节我已经简单介绍了一下TensorFlow里面基础的数据结构 ...
 - Polynomial regression
 - (转)The Road to TensorFlow
		
Stephen Smith's Blog All things Sage 300… The Road to TensorFlow – Part 7: Finally Some Code leave a ...
 - [Tensorflow] Object Detection API - retrain mobileNet
		
前言 一.专注话题 重点话题 Retrain mobileNet (transfer learning). Train your own Object Detector. 这部分讲理论,下一篇讲实践. ...
 - Ubuntu 14.04(64位)+GTX970+CUDA8.0+Tensorflow配置 (双显卡NVIDIA+Intel集成显卡)   ------本内容是长时间的积累,有时间再详细整理
		
(后面内容是本人初次玩GPU时,遇到很多坑的问题总结及尝试解决办法.由于买独立的GPU安装会涉及到设备的兼容问题,这里建议还是购买GPU一体机(比如https://item.jd.com/396477 ...
 
随机推荐
- AR934X built-in switch链路检测问题及处理方法
			
1 问题 在使用QSDK平台配合QCA9531方案时,碰到过2个实在无解的问题,其一:将有线口连接到其它傻瓜交换机上,然后通过无线或另一个有线口登录的设备上,执行ifconfig ethx down, ...
 - 两个文件比较之comm命令
			
comm命令可用于两个文件之间的比较.它有很多不错的选项可用来调整输出,以便我们执行交集.求差(difference)以及差集操作. 交集:打印出两个文件所共有的行. 求差:打印出指定文件所包含的 ...
 - Linux 软件安装到 /usr,/usr/local/ 还是 /opt 目录区别
			
Linux 的软件安装目录是也是有讲究的,理解这一点,在对系统管理是有益的 /usr:系统级的目录,可以理解为C:/Windows/, /usr/lib理解为C:/Windows/System32./ ...
 - angularJS入门笔记
			
1.debug调试工具:batarang2.ng指令 1.ng-app=" " 定义angularJS的使用范围:----main方法,入口 ng-app="myModu ...
 - numpy.random中的shuffle和permutation以及mini-batch调整数据集(X, Y)
			
0. numpy.random中的shuffle和permutation numpy.random.shuffle(x) and numpy.random.permutation(x),这两个有什么不 ...
 - ubuntu 卸载从源码安装的 emacs
			
由于配置问题想卸了重装. 解压并进入你的源码所在目录: ./configure sudo make uninstall Done Reference: http://askubuntu.com/que ...
 - Ubuntu 搭建 GlusterFS 过程笔记
			
https://download.gluster.org/pub/gluster/ #要安装的东西 ---- ``` apt install -y build-essential gcc make c ...
 - JavaScript原型与原型链
			
一.数据类型 JavaScript的数据类型可以分为基本数据类型和引用数据类型. 基本数据类型(6种) String Number Boolean null undefined Symbol(ES6) ...
 - Node.js URL
			
稳定性: 3 - 稳定 这个模块包含分析和解析 URL 的工具.调用 require('url') 来访问模块. 解析 URL 对象有以下内容,依赖于他们是否在 URL 字符串里存在.任何不在 URL ...
 - audio session config
			
#pragma mark - #pragma mark - audio session config - (void)setAudioSessionConfig { NSError *error; A ...