令$(S_{a},S_{b})$表示$a_{i}\in S_{a}$且$b_{i}\in S_{b}$的i个数,那么答案相当于$S(0,1)+S(1,0)=S(0,1)+S(\{0,1\},0)-S(0,0)$,容易发现$S(\{0,1\},0)=\sum_{i=1}^{n}[b_{i}==0]$,那么相当于最小化$S(0,1)-S(0,0)$,因此答案与1的位置无关
然后dp,用$f[i][j]$表示前i个点最小的$S(0,1)-S(0,0)$且$\forall \min(i,j)\le k\le n,a_{k}=[k\le j]$,考虑转移:
1.如果$i\le j$,那么$f[i][j]=\min(f[i][j],f[i-1][j])$;如果$j<i$,那么$f[i][j]=\min(f[i][j],f[i-1][j]+2b_{i}-1)$
2.对于操作区间$[l,r]$,如果$l=i$,那么$f[i][r]=\min(f[i][r],\min_{i-1\le j\le r}(f[i-1][j]))$(注意滚动后要从大到小枚举r)
容易发现以下两种转移都是由$f[i-1]$转移到$f[i]$,用线段树维护,支持区间修改,区间查询最小值,单点取min即可(初始值应该赋为无穷大),最终答案即为$\min(f[n][i])+\sum_{i=1}^{n}[b_{i}==0]$

 1 #include<bits/stdc++.h>
2 using namespace std;
3 #define N 200005
4 #define L (k<<1)
5 #define R (L+1)
6 #define mid (l+r>>1)
7 vector<int>v[N];
8 int n,m,x,y,ans,a[N],tag[N<<2],f[N<<2];
9 void upd(int k,int x){
10 tag[k]+=x;
11 f[k]+=x;
12 }
13 void down(int k){
14 if (tag[k]){
15 upd(L,tag[k]);
16 upd(R,tag[k]);
17 tag[k]=0;
18 }
19 }
20 void update(int k,int l,int r,int x,int y){
21 if (l==r){
22 f[k]=min(f[k],y);
23 return;
24 }
25 down(k);
26 if (x<=mid)update(L,l,mid,x,y);
27 else update(R,mid+1,r,x,y);
28 f[k]=min(f[L],f[R]);
29 }
30 void update(int k,int l,int r,int x,int y,int z){
31 if ((l>y)||(x>r))return;
32 if ((x<=l)&&(r<=y)){
33 upd(k,z);
34 return;
35 }
36 down(k);
37 update(L,l,mid,x,y,z);
38 update(R,mid+1,r,x,y,z);
39 f[k]=min(f[L],f[R]);
40 }
41 int query(int k,int l,int r,int x,int y){
42 if ((l>y)||(x>r))return 0x3f3f3f3f;
43 if ((x<=l)&&(r<=y))return f[k];
44 return min(query(L,l,mid,x,y),query(R,mid+1,r,x,y));
45 }
46 int main(){
47 scanf("%d",&n);
48 for(int i=1;i<=n;i++){
49 scanf("%d",&a[i]);
50 ans+=(a[i]^1);
51 }
52 scanf("%d",&m);
53 for(int i=1;i<=m;i++){
54 scanf("%d%d",&x,&y);
55 v[x].push_back(y);
56 }
57 for(int i=1;i<=n;i++)sort(v[i].begin(),v[i].end());
58 memset(f,0x3f,sizeof(f));
59 update(1,0,n,0,0);
60 for(int i=1;i<=n;i++){
61 for(int j=(int)v[i].size()-1;j>=0;j--)update(1,0,n,v[i][j],query(1,0,n,0,v[i][j]));
62 update(1,0,n,0,i-1,2*a[i]-1);
63 }
64 printf("%d",f[1]+ans);
65 }

[atARC085F]NRE的更多相关文章

  1. NRE

    NRE是Non-Recurring Engineering的缩写,NRE费用即一次性工程费用,是指集成电路生产成本中非经常性发生的开支,明确地说就是新的集成电路产品的研制开发费·新产品开发过程中的设计 ...

  2. ARC085F NRE

    看了题解. 题目大意 你有一个长度为 \(N\) 的全为 \(0\) 的序列 \(A\),给你一个长度同样为 \(N\) 的 \(0/1\) 序列 \(B\),允许你对把 \(A\) 的一些区间中的数 ...

  3. [ActiveMQ]初识ActiveMQ

    初识ActiveMQ ActiveMQ介绍 官方网站:http://activemq.apache.org/ 最新版本:ActiveMQ 5.14.1(2016-10-28) 最新版本下载链接:htt ...

  4. 谈谈SQL 语句的优化技术

    https://blogs.msdn.microsoft.com/apgcdsd/2011/01/10/sql-1/ 一.引言 一个凸现在很多开发者或数据库管理员面前的问题是数据库系统的性能问题.性能 ...

  5. Android学习——windows下搭建NDK_r9环境

    1. NDK(Native Development Kit) 1.1 NDK简介 Android NDK是一套允许开发人员使用本地代码(如C/C++)进行Android APP功能开发的工具,通过这个 ...

  6. java web学习总结(六) -------------------servlet开发(二)

    一.ServletConfig讲解 1.1.配置Servlet初始化参数 在Servlet的配置文件web.xml中,可以使用一个或多个<init-param>标签为servlet配置一些 ...

  7. 深入理解C++对象模型

    C++对象模型是比较重要的一个知识点,学习C++对象的内存模型,就可以明白C++中的多态原理.类的初始化顺序问题.类的大小问题等. 1 C++对象模型基础 1.1 C++对象中都有哪些东东 C++对象 ...

  8. servlet(二)

    一.ServletConfig讲解 1.1.配置Servlet初始化参数 在Servlet的配置文件web.xml中,可以使用一个或多个<init-param>标签为servlet配置一些 ...

  9. jQuery Mobile学习日记之HelloWorld

    这里是本人学习jQuery Mobile的过程,主要用于记录,过程中有不对的地方或不严谨的地方,欢予以指出纠正,非常感谢! 1.首先是下载安装以下文件: [Opera Mobile Emulator] ...

随机推荐

  1. Linux基础安全配置(centos7)

    1.帐户口令的生存期不长于90天 sed -i.old 's#99999#90#g' /etc/login.defs egrep "90" /etc/login.defs 2.密码 ...

  2. Firewalls命令行配置

    1.指定端口开放查询.开放.关闭端口 # 查询端口是否开放 firewall-cmd --query-port=8080/tcp # 开放80端口 firewall-cmd --permanent - ...

  3. 洛谷4103 HEOI2014大工程(虚树+dp)

    又是一道虚树好题啊 我们建出来虚树,然后考虑dp过程,我们分别令\(sum[x],mndis[x],mxdis[x],size[x]\)为子树内的路径长度和,最短链,最长链,子树内关键点个数. 对于一 ...

  4. 2020.12.20-Codeforces Round #105补题

    B - Escape The princess is going to escape the dragon's cave, and she needs to plan it carefully. Th ...

  5. JVM详解(六)——对象的实例化、内存布局与访问定位

    一.对象的实例化 1.创建对象的方式 2.创建对象的步骤 脑图:https://www.processon.com/view/link/61701a927d9c087040525226 3.对象属性赋 ...

  6. kivy Label标记文本

    from kivy.app import App from kivy.uix.boxlayout import BoxLayout from kivy.lang import Builder # 注意 ...

  7. [对对子队]会议记录5.15(Scrum Meeting2)

    今天已完成的工作 吴昭邦 ​ 工作内容:衔接循环指令系统,搭建第4关 ​ 相关issue:实现循环组件 ​ 相关签入:feat: 将模型加入第四关 第四关可以顺利通过 何瑞 ​ 工作内容:衔接循环指令 ...

  8. Beta阶段第四次会议

    Beta阶段第四次会议 时间:2020.5.20 完成工作 姓名 工作 难度 完成度 ltx 1.对小程序进行修改2.提出相关api修改要求 轻 85% xyq 1.设计所需api文档2.编写相关技术 ...

  9. advanced base-scripting guide in chinese(高级Bash脚本编程指南-10)

    <高级Bash脚本编程指南>Revision 10中文版 github上链接地址: https://github.com/LinuxStory/Advanced-Bash-Scriptin ...

  10. hdu 5108 Alexandra and Prime Numbers(水题 / 数论)

    题意: 给一个正整数N,找最小的M,使得N可以整除M,且N/M是质数. 数据范围: There are multiple test cases (no more than 1,000). Each c ...