Class Activation Mapping (CAM)
概
CAM (class activation mapping) 是一种非常实用的可视化方法, 同时在弱监督学习中(如VQA)起了举足轻重的作用.
主要内容
CAM的概念, 用于解释, 为什么神经网络能够这么有效, 而它究竟关注了什么?
| 符号 | 说明 |
|---|---|
| \(f(\cdot)\) | 网络 |
| \(X\) | 网络输入 |
| \(A_l^k\) | 第\(l\)层的第\(k\)张特征图(特指在卷积层中) |
| \(w\) | 权重 |
| \(c\) | 所关心的类别 |
| \(\alpha\) | 用于CAM的权重 |
CAM

最开始的CAM仅用于特殊的CNN: 卷积层 + AvgPool + FC的结构,
设最后一层卷积层的特征图为\(A_L\), 则
\]
进一步可以注意到,
\]
于是可以定义:
\]
这里, \(\alpha = \frac{w}{HW}\).
即
\]
一般, 这种score会最后加个relu:
\]
Grad-CAM
普通的CAM有限制, Grad-CAM在此基础上进行扩展.
\]
\]
注意: \(L \rightarrow l\).
Grad-CAM++
作者认为, Grad-CAM++不能很好应对多个目标的情况, 应该进一步加权:
\]
\]
Score-CAM
作者认为, 利用梯度计算score并不是一个很好的主意.
\]
这里\(X_b\)是一个固定的基准向量, 作者直接取\(f(X_b)=\mathbb{0}\),
\]
为将\(A_l^k\)上采样至和\(X\)相同大小, 并标准化:
\]
使其落于\([0, 1]\).
最后
\(L^c_*\)最后也只是\(H\times W\)的, 需要上采样到和\(X\)一样的大小.
代码
Class Activation Mapping (CAM)的更多相关文章
- pytorch中网络特征图(feture map)、卷积核权重、卷积核最匹配样本、类别激活图(Class Activation Map/CAM)、网络结构的可视化方法
目录 0,可视化的重要性: 1,特征图(feture map) 2,卷积核权重 3,卷积核最匹配样本 4,类别激活图(Class Activation Map/CAM) 5,网络结构的可视化 0,可视 ...
- grad-cam 、cam 和热力图,基于keras的实现
http://bindog.github.io/blog/2018/02/10/model-explanation/ http://www.sohu.com/a/216216094_473283 ht ...
- 在CNN上增加一层CAM告诉你CNN到底关注什么
Cam(Class Activation Mapping)是一个很有意思的算法,他能够将神经网络到底在关注什么可视化的表现出来.但同时它的实现却又如此简介,相比NIN,googLenet这些使用GAP ...
- 凭什么相信你,我的CNN模型
背景 学术界一直困惑的点是"如何让看似黑盒的CNN模型说话",即对它的分类结果给出解释. 这里的解释是指,让模型告诉我们它是通过图片的哪些像素做出判断的,并不是深度学习理论层面的解 ...
- [Kaggle] How to handle big data?
上一篇,[Kaggle] How to kaggle?[方法导论] 这里再做一点进阶学习. 写在前面 "行业特征" 的重要性 Ref: Kaggle2017—1百万美金的肺癌检测竞 ...
- 化繁为简,弱监督目标定位领域的新SOTA - 伪监督目标定位方法(PSOL) | CVPR 2020
论文提出伪监督目标定位方法(PSOL)来解决目前弱监督目标定位方法的问题,该方法将定位与分类分开成两个独立的网络,然后在训练集上使用Deep descriptor transformation(DDT ...
- 卷积网络可解释性复现 | Grad-CAM | ICCV | 2017
觉得本文不错的可以点个赞.有问题联系作者微信cyx645016617,之后主要转战公众号,不在博客园和CSDN更新. 论文名称:"Grad-CAM: Visual Explanations ...
- Grad-CAM:Visual Explanations from Deep Networks via Gradient-based Localization
目录 Grad-CAM:Visual Explanations from Deep Networks via Gradient-based Localization 1.Abstract 2.Intr ...
- Res2net:多尺度骨干网络结构
<Res2Net: A New Multi-scale Backbone Architecture> 来自:南开大学程明明组 论文:https://arxiv.org/abs/1904.0 ...
随机推荐
- 生产调优1 HDFS-核心参数
目录 1 HFDS核心参数 1.1 NameNode 内存生产配置 问题描述 hadoop-env.sh中配置 1.2 NameNode 心跳并发配置 修改hdfs-site.xml配置 1.3 开启 ...
- day11 系统安全
day11 系统安全 复习总结 文件 1.创建 格式:touch [路径] [root@localhost ~]# touch 1.txt # 当前路径创建 [root@localhost ~]# t ...
- C语言大小端判定
要判定大小端?需要弄清以下几个问题: 1.当一个变量占多个字节时,变量的指针指向的是低地址 2.什么是大小端? 大端模式:是指数据的高字节保存在内存的低地址中,而数据的低字节保存在内存的高地址中. 小 ...
- 零基础学习java------day16-----文件,递归,IO流(字节流读写数据)
1.File 1.1 构造方法(只是创建已经存在文件的对象,并不能创建没有的文件) (1)public File(String pathname) (2)public File(String pare ...
- [转]sizeof计算空间大小的总结
原文链接:http://www.cnblogs.com/houjun/p/4907622.html 关于sizeof的总结 1.sizeof的使用形式:sizeof(var_name)或者sizeof ...
- Hibernate持久化标志符生成策略
generator子元素定义持久化标识符的生成策略,为持久化类对应的数据库表的主键找到了赋值方法,HIbernate默认将使用assigned的持久化标识符生成策略.关系型数据库的主键定义方式:(1) ...
- vue引入d3
单页面使用 cnpm install d3 --save-dev 指定版本安装 cnpm install d3@6.3.1 -S <script> import * as d3 from ...
- clickhouse客户端使用
测试初始化 clickhouse-client -m create database if not exists test; use test; drop table test; create tab ...
- [MySQL实战-Mysql基础篇]-mysql的日志
参考文章: https://www.cnblogs.com/f-ck-need-u/archive/2018/05/08/9010872.html https://dev.mysql.com/doc/ ...
- 用graphviz可视化决策树
1.安装graphviz. graphviz本身是一个绘图工具软件,下载地址在:http://www.graphviz.org/.如果你是linux,可以用apt-get或者yum的方法安装.如果是w ...