Zhou B., Khosla A., Lapedriza A., Oliva A. and Torralba A. Learning Deep Features for Discriminative Localization. CVPR, 2016.

Selvaraju R., Das A., Vedantam R>, Cogswell M., Parikh D. and Batra D.Grad-CAM: Why did you say that? Visual Explanations from Deep Networks via Gradient-based Localization. ICCV, 2017.

Chattopadhyay A., Sarkar A. and Balasubramanian V. Grad-CAM++: Improved Visual Explanations for Deep Convolutional Networks. IEEE Winter Conference on Applications of Computer Vision (WACV), Lake Tahoe, 2018.

Wang H., Wang Z., Mardziel P., Hu X., Yang F., Du M., Ding S. and Zhang Z.Score-CAM: Score-Weighted Visual Explanations for Convolutional Neural Networks. CVPR, workshop, 2020.

CAM (class activation mapping) 是一种非常实用的可视化方法, 同时在弱监督学习中(如VQA)起了举足轻重的作用.

主要内容

CAM的概念, 用于解释, 为什么神经网络能够这么有效, 而它究竟关注了什么?

符号 说明
\(f(\cdot)\) 网络
\(X\) 网络输入
\(A_l^k\) 第\(l\)层的第\(k\)张特征图(特指在卷积层中)
\(w\) 权重
\(c\) 所关心的类别
\(\alpha\) 用于CAM的权重

CAM

最开始的CAM仅用于特殊的CNN: 卷积层 + AvgPool + FC的结构,

设最后一层卷积层的特征图为\(A_L\), 则

\[f_c(X) = {w^c}^T GP(A_L), [GP(A_L)]_k = \frac{1}{HW}\sum_i^H \sum_j^W [A_L^k]_{ij}, k=1,\cdots, K.
\]

进一步可以注意到,

\[f_c(X) = \frac{1}{HW} \sum_i^H \sum_j^W [\sum_{k=1}^K w_k^c [A_L^k]_{ij}].
\]

于是可以定义:

\[[L_{CAM}^c]_{ij} = \sum_{k=1}^K \alpha_k^c [A_L^k]_{ij}, \quad i=1,\cdots H, j=1,\cdots, W.
\]

这里, \(\alpha = \frac{w}{HW}\).

\[L_{CAM}^c = \sum_{k=1}^K \alpha_k^c A_L^k.
\]

一般, 这种score会最后加个relu:

\[L_{CAM}^c = \mathrm{ReLU}(\sum_{k=1}^K \alpha_k^c A_L^k).
\]

Grad-CAM

普通的CAM有限制, Grad-CAM在此基础上进行扩展.

\[L_{Grad-CAM}^c = \mathrm{ReLU}(\sum_{k=1}^K \alpha_k^c A_l^k),
\]
\[\alpha_k^c = GP(\frac{\partial f^c}{\partial A_l^k})=\frac{1}{HW}\sum_i \sum_j \frac{\partial f_c}{\partial [A_l^k]_{ij}}.
\]

注意: \(L \rightarrow l\).

Grad-CAM++

作者认为, Grad-CAM++不能很好应对多个目标的情况, 应该进一步加权:

\[\alpha_k^c = \frac{1}{HW} \sum_i \sum_j \alpha_{ij}^{kc} \mathrm{ReLU}(\frac{\partial f_c}{\partial [A_{l}^k]_{ij}}),
\]
\[\alpha_{ij}^{kc}=\frac{\frac{\partial^2 f_c}{(\partial[A_{l}^k]_{ij})^2}}{2\frac{\partial^2 f_c}{(\partial[A_{l}^k]_{ij})^2}+\sum_i\sum_j[A_l^k]_{ij}\frac{\partial^3 f_c}{(\partial[A_{l}^k]_{ij})^3}}.
\]

Score-CAM

作者认为, 利用梯度计算score并不是一个很好的主意.

\[\alpha_k^c = f_c(X \circ H_l^k) - f(X_b),
\]

这里\(X_b\)是一个固定的基准向量, 作者直接取\(f(X_b)=\mathbb{0}\),

\[H_l^k = s(Up(A_l^k)),
\]

为将\(A_l^k\)上采样至和\(X\)相同大小, 并标准化:

\[s(M) = \frac{M - \min M}{\max M - \min M},
\]

使其落于\([0, 1]\).

最后

\(L^c_*\)最后也只是\(H\times W\)的, 需要上采样到和\(X\)一样的大小.

代码

Pytorch-GradCAM

GradCAM

GradCAM++

ScoreCAM

Class Activation Mapping (CAM)的更多相关文章

  1. pytorch中网络特征图(feture map)、卷积核权重、卷积核最匹配样本、类别激活图(Class Activation Map/CAM)、网络结构的可视化方法

    目录 0,可视化的重要性: 1,特征图(feture map) 2,卷积核权重 3,卷积核最匹配样本 4,类别激活图(Class Activation Map/CAM) 5,网络结构的可视化 0,可视 ...

  2. grad-cam 、cam 和热力图,基于keras的实现

    http://bindog.github.io/blog/2018/02/10/model-explanation/ http://www.sohu.com/a/216216094_473283 ht ...

  3. 在CNN上增加一层CAM告诉你CNN到底关注什么

    Cam(Class Activation Mapping)是一个很有意思的算法,他能够将神经网络到底在关注什么可视化的表现出来.但同时它的实现却又如此简介,相比NIN,googLenet这些使用GAP ...

  4. 凭什么相信你,我的CNN模型

    背景 学术界一直困惑的点是"如何让看似黑盒的CNN模型说话",即对它的分类结果给出解释. 这里的解释是指,让模型告诉我们它是通过图片的哪些像素做出判断的,并不是深度学习理论层面的解 ...

  5. [Kaggle] How to handle big data?

    上一篇,[Kaggle] How to kaggle?[方法导论] 这里再做一点进阶学习. 写在前面 "行业特征" 的重要性 Ref: Kaggle2017—1百万美金的肺癌检测竞 ...

  6. 化繁为简,弱监督目标定位领域的新SOTA - 伪监督目标定位方法(PSOL) | CVPR 2020

    论文提出伪监督目标定位方法(PSOL)来解决目前弱监督目标定位方法的问题,该方法将定位与分类分开成两个独立的网络,然后在训练集上使用Deep descriptor transformation(DDT ...

  7. 卷积网络可解释性复现 | Grad-CAM | ICCV | 2017

    觉得本文不错的可以点个赞.有问题联系作者微信cyx645016617,之后主要转战公众号,不在博客园和CSDN更新. 论文名称:"Grad-CAM: Visual Explanations ...

  8. Grad-CAM:Visual Explanations from Deep Networks via Gradient-based Localization

    目录 Grad-CAM:Visual Explanations from Deep Networks via Gradient-based Localization 1.Abstract 2.Intr ...

  9. Res2net:多尺度骨干网络结构

    <Res2Net: A New Multi-scale Backbone Architecture> 来自:南开大学程明明组 论文:https://arxiv.org/abs/1904.0 ...

随机推荐

  1. nit是虱子的卵

    如题.[牛津] (egg of a) louse or other parasitic insect 虱或其他寄生虫(的卵). 忘了在那个帖子里说nit: 虱子了. 为了凑字数,迄今为止六级/考研单词 ...

  2. ache

    ache和pain可能没啥差别,头疼和头好痛都对.从词典来看,有backache, bellyache, earache, headache, heartache, moustache/mustach ...

  3. django中的filter(), all(), get()

    1. 类名.objects中的get(), filter(), all() 的区别 结论: (1)all()返回的是QuerySet对象,程序并没有真的在数据库中执行SQL语句查询数据,但支持迭代,使 ...

  4. 【STM8】外挂存储器W25Q16

    好像有几张图片被强制缩小了?看到这篇博客的人先对你们说声抱歉,我不知道怎么设置 文字就可以很长(文章宽度的全部),图片就只有文章宽度的2/3宽度 开新分页应该就是原始尺寸了,这点还是和大家说抱歉... ...

  5. JVM——内存分配与回收策略

    1.对象优先在Eden区分配 大多数情况下,对象在新生代Eden区分配.当Eden区没有足够的空间进行分配时,虚拟机将发起一次Minor GC. 虚拟机提供了 -XX:+PrintGCDetails这 ...

  6. MyBatis常用批量方法

    <!-- 批量添加派车单子表数据 --> <insert id="addBatch" parameterType="java.util.List&quo ...

  7. 通过Jedis操作Redis

    package com.yh; import org.junit.After; import org.junit.Before; import org.junit.Test; import redis ...

  8. 一行配置搞定 Spring Boot项目的 log4j2 核弹漏洞!

    相信昨天,很多小伙伴都因为Log4j2的史诗级漏洞忙翻了吧? 看到群里还有小伙伴说公司里还特别建了800+人的群在处理... 好在很快就有了缓解措施和解决方案.同时,log4j2官方也是速度影响发布了 ...

  9. .net core Winform 添加DI和读取配置、添加log

    首先新建配置类 public class CaptureOption { /// <summary> /// 是否自启 /// </summary> public bool A ...

  10. Solon 1.6.6 发布,细节打磨

    Solon 已有120个生态扩展插件,此次更新主要为细节打磨: 增加 @Inject("ds1") BeanWrap bw 模式注入 @Configuration public c ...