需要一点灵感的题目。

可以发现这样一个事情,当三个数中有两个数相同时,中为数一定是这两个相同的数。

基于这个观察,我们想让每一行都存在这样两个相同的两个数,就一定能保证第一层的值为 \(x\) 了。

继续观察可以发现,这样两个相同的数需要紧挨在一起,否则不能保证上面也存在两个相同的 \(x\)。

那么对于两个在 \(p, p + 1\) 的相同数 \(x\),必然能使得下一层的 \(p - 1, p\) 也均为 \(x\)(当 \(p - 1, p\) 在下一层的状态下存在时)。

那么我们的目标就变为找到一个位置 \(p\) 使得在向上移动时 \(p, p + 1\) 总是存在。

不难发现 \(p = n - 1\) 即可满足这个条件,于是我们只需要让第二层 \(p - 1, p\) 为 \(x\) 即可。

这个直接构造即可,需要注意的是 \(1, 2n - 1\) 是无解的,因为这两个数在第二层显然至多只会存在一个,且必为最大值或最小值,因此必然无解。

同时,需要特判 \(n = 2\) 的情况。

#include <bits/stdc++.h>
using namespace std;
#define rep(i, l, r) for (int i = l; i <= r; ++i)
const int N = 200000 + 5;
int n, k, p[N]; bool book[N];
int read() {
char c; int x = 0, f = 1;
c = getchar();
while (c > '9' || c < '0') { if(c == '-') f = -1; c = getchar();}
while (c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return x * f;
}
int main() {
n = read(), k = read();
if(k == 1 || k == 2 * n - 1) puts("No");
else {
puts("Yes");
if(n == 2) rep(i, 1, 2 * n - 1) p[i] = i;
else {
p[n] = k, book[k] = true;
if(k == 2 * n - 2) {
p[n - 1] = k - 1, p[n + 1] = k + 1, p[n + 2] = k - 2;
book[k - 1] = book[k + 1] = book[k - 2] = true;
}
else {
p[n - 1] = k + 2, p[n + 1] = k - 1, p[n + 2] = k + 1;
book[k + 2] = book[k - 1] = book[k + 1] = true;
}
int P = 1;
rep(i, 1, n - 2) {
for (; P <= 2 * n - 1 && book[P]; ++P) ;
p[i] = P, ++P;
}
rep(i, n + 3, 2 * n - 1) {
for (; P <= 2 * n - 1 && book[P]; ++P) ;
p[i] = P, ++P;
}
}
rep(i, 1, 2 * n - 1) printf("%d ", p[i]);
}
return 0;
}

构造题一定要基于观察下手,一定要思考必然性而不是人脑随机应变。

AT2163 [AGC006B] Median Pyramid Easy的更多相关文章

  1. B - Median Pyramid Easy 构造题

    B - Median Pyramid Easy Time limit : 2sec / Memory limit : 256MB Score : 400 points Problem Statemen ...

  2. $AT2163\ Median\ Pyramid\ Easy$ 构造

    正解:构造 解题报告: 传送门$QwQ$ 考虑如果有两个相邻格子是相同数字那么它们以上这两列就都会是这列数字(显然$QwQ$? 所以考虑只要构造出第$n-1$行的中心和中心右侧($or$左侧一样的$Q ...

  3. 【AtCoder】【模型转化】【二分答案】Median Pyramid Hard(AGC006)

    题意: 给你一个排列,有2*n-1个元素,现在进行以下的操作: 每一次将a[i]替换成为a[i-1],a[i],a[i+1]三个数的中位数,并且所有的操作是同时进行的,也就是说这一次用于计算的a[], ...

  4. AT2165 Median Pyramid Hard 二分答案 脑洞题

    无论再来多少次也不可能想到的写法. 二分一个最小的顶端值\(k\),大于设为\(1\)小于等于设为\(0\),可以证猜出来(你跟我说这可以?)如果存在两个连在一起的0/1那么它们会一直往上跑,还可以很 ...

  5. AGC006D Median Pyramid Hard

    闲扯 今天模拟的题,应该是挺简单的二分和贪心,就是没想出来,我好弱啊 顺便ORZ聚聚BLUESKY007,踩爆我了 思路 今天发现中位数性质如此优秀 二分最后塔顶的数,大于等于它的数变为1,小于它的数 ...

  6. [agc006D]Median Pyramid Hard-[二分+乱搞]

    Description 题目大意:给你一个长度为n*2-1的排列,将除了该序列头尾的两个数外的其他数(设为i)变为原序列i-1,i,i+1下标数的中位数.求最后的数是什么.例子如下: Solution ...

  7. AT2165 Median Pyramid Hard

    题目链接:戳我 一看范围1e5,往二分上想. 可是再怎么也没有想到这个神仙的二分答案qwq 我们二分一个数x,设比他大的数为1,小于等于他的数为0.那么我们就可以把原来的那个转化成一个01塔. 然后我 ...

  8. [AGC006] D - Median Pyramid Hard 二分

    Description ​ 现在有一个NN层的方块金字塔,从最顶层到最底层分别标号为1...N1...N. ​ 第ii层恰好有2i−12i−1个方块,且每一层的中心都是对齐的. 这是一个N=4N=4的 ...

  9. [AGC06D] Median Pyramid Hard (玄学)

    Description 现在有一个N层的方块金字塔,从最顶层到最底层分别标号为1...N. 第i层恰好有2i−1个方块,且每一层的中心都是对齐的. 这是一个N=4的方块金字塔 现在,我们首先在最底层填 ...

随机推荐

  1. 第十七个知识点:描述和比较DES和AES的轮结构

    第十七个知识点:描述和比较DES和AES的轮结构 这是密码学52件事中的第17篇.本周我们描述和比较DES和AES的结构. DES和AES都是迭代分组密码的例子.分组密码通过重复使用一个简单的轮函数来 ...

  2. Towards Evaluating the Robustness of Neural Networks

    目录 概 主要内容 基本的概念 目标函数 如何选择c 如何应对Box约束 attack attack attack Nicholas Carlini, David Wagner, Towards Ev ...

  3. Spurious Local Minima are Common in Two-Layer ReLU Neural Networks

    目录 引 主要内容 定理1 推论1 引理1 引理2 Safran I, Shamir O. Spurious Local Minima are Common in Two-Layer ReLU Neu ...

  4. DP转LVDS方案 瑞奇达CS5211替代PS8625方案 CS5211芯片

    PS8625将作为DP或eDP接收器设备出现在视频源中,并将作为LVDS显示面板的LVDS源设备.该设备是一个完全集成的解决方案,不需要外部CPU.内存.时钟基准或电压调节器.PS8625可配置为从显 ...

  5. 【03】SpringBoot2核心技术-核心功能—数据访问_单元测试_指标监控

    3.数据访问(SQL) 3.1 数据库连接池的自动配置-HikariDataSource 1.导入JDBC场景 <dependency> <groupId>org.spring ...

  6. nginx + tomcat 单个域名及多个域名的配置

    //nginx + tomcat 单个域名及多个域名的配置//修改nginx的配置文件,linux默认路径 /usr/local/nginx/conf/nginx.conf //prot为8082的w ...

  7. 在CentOS7 安装 jq

    root@: 安装EPEL源: yum install epel-release 安装完EPEL源后,可以查看下jq包是否存在: yum list jq 安装jq: yum install jq 命令 ...

  8. 简单谈谈 TCP/IP

    1.前言 IP 或 ICMP.TCP 或 UDP.TELNET 或 FTP.以及 HTTP 等都属于 TCP/IP 协议. 他们与 TCP 或 IP 的关系紧密,是互联网必不可少的组成部分.TCP/I ...

  9. spring security 继承 WebSecurityConfigurerAdapter 的重写方法configure() 参数 HttpSecurity 常用方法及说明

    HttpSecurity 常用方法及说明 方法 说明 openidLogin() 用于基于 OpenId 的验证 headers() 将安全标头添加到响应 cors() 配置跨域资源共享( CORS ...

  10. java单元测试调用mybatis接口并执行

    今天想使用单元测试类,存储一些数据到mysql,可是,一直在报错,org.springframework.beans.factory.NoSuchBeanDefinitionException: No ...