题意:

      给你n个未知的正整数,有三总操作

      I P V            P的值是V

      I P Q V          P XOR Q = V

      Q K x1 x2....xk  求这k个数所有异或后的值

思路:

      带权并查集,感觉这个题目用的很巧,设计到以下知识,a ^ b = c ,a ^ c = b ,b 

^ c = a他们三个是等价的,还有就是a ^ b ^ a = b ,这个题目自己好好画画就出来了,确定好带权并查集后可以虚拟出来一个点,把它做为真实点,就是如果谁的根是他那么这个值就已经确定了,我虚拟的是0点,把其他的点都映射成+1,还有就是这个题目的核心部分就是查询的那个地方,除了确定的点,其他的必须是每个集合都出现了偶数个的时候才能算出来,原因就是“性质不同的数不能乘在一起,要么就是相对位置相乘,要么就是确定的数字相乘,两个相对位置相乘的到的是确定的数字,确定的数字相乘得到的还是确定的数字”,这个题目设计到很多细节,我就不说了,谁做谁知道啊!
还有就是提醒个最坑的地方 a ^ b != c 他和 (a ^ b) != c不是等价的,优先级的原因。其他的做的时候就知道了,今天手残,这个题目做了17次才AC.


#include<stdio.h>
#include<string.h> #define N 22000

int
mer[N] ,Xor[N];
int
ss[N]; int finds(int x)
{
if(
x == mer[x]) return x;
int
t = mer[x];
mer[x] = finds(mer[x]);
Xor[x] = Xor[x] ^ Xor[t];
return
mer[x];
} int main ()
{
int
n ,m ,i ,j ,num ,p ,q ,v ,k;
int
n1 ,n2 ,n3 ,cas = 1 ,fact ,stop;
char
str[10] ,c;
while(~
scanf("%d %d" ,&n ,&m) && n + m)
{

printf("Case %d:\n" ,cas ++);
for(
i = 0 ;i <= n ;i ++)
mer[i] = i ,Xor[i] = 0;
for(
stop = fact = 0 ,i = 1 ;i <= m ;i ++)
{

scanf("%s" ,str);
if(
str[0] == 'I')
{

fact ++; int ii = 0;
while(
1)
{

scanf("%d%c" ,&num ,&c);
ii ++;
if(
ii == 1) n1 = num;
if(
ii == 2) n2 = num;
if(
ii == 3) n3 = num;
if(
c == '\n') break;
}
if(
stop) continue;
if(
ii == 2)
{

p = n1 + 1 ,v = n2;
int
x = finds(p);
if(!
x)
{
if(
Xor[p] == v) continue;
stop = 1;
printf("The first %d facts are conflicting.\n" ,fact ++);
}
else
{

mer[x] = 0;
Xor[x] = Xor[p] ^ v;
}
}
if(
ii == 3)
{

p = n1 + 1 ,q = n2 + 1 ,v = n3;
int
x = finds(p) ,y = finds(q);
if(
x == y)
{
if((
Xor[p] ^ Xor[q]) == v) continue;
stop = 1;
printf("The first %d facts are conflicting.\n" ,fact ++);
}
else
{
if(
y)
{

mer[y] = x;
Xor[y] = Xor[p] ^ Xor[q] ^ v;
}
else
{

mer[x] = y;
Xor[x] = Xor[p] ^ Xor[q] ^ v;
}
}
}
}
else
{

scanf("%d" ,&k);
memset(ss ,0 ,sizeof(ss));
int
sum = 0 ,mk = 0;
for(
j = 1 ;j <= k ;j ++)
{

scanf("%d" ,&num);
num ++;
ss[finds(num)] ++;
sum = sum ^ Xor[num];
}
for(
j = 1 ;j <= n ;j ++)
if(
ss[j] & 1) mk = 1;
if(
stop) continue;
if(
mk) puts("I don't know.");
else
printf("%d\n" ,sum);
}
}

puts("");
}
return
0;
}

hdu3234 带权并查集(XOR)的更多相关文章

  1. 【uva12232/hdu3461】带权并查集维护异或值

    题意: 对于n个数a[0]~a[n-1],但你不知道它们的值,通过逐步提供给你的信息,你的任务是根据这些信息回答问题: I P V :告诉你a[P] = V I P Q V:告诉你a[P] XOR a ...

  2. 2017乌鲁木齐区域赛I(带权并查集)

    #include<bits/stdc++.h>using namespace std;int f[200010];//代表元long long rl[200010];//记rl[i]为结点 ...

  3. POJ 1703 Find them, Catch them(带权并查集)

    传送门 Find them, Catch them Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 42463   Accep ...

  4. [NOIP摸你赛]Hzwer的陨石(带权并查集)

    题目描述: 经过不懈的努力,Hzwer召唤了很多陨石.已知Hzwer的地图上共有n个区域,且一开始的时候第i个陨石掉在了第i个区域.有电力喷射背包的ndsf很自豪,他认为搬陨石很容易,所以他将一些区域 ...

  5. poj1417 带权并查集 + 背包 + 记录路径

    True Liars Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 2713   Accepted: 868 Descrip ...

  6. poj1984 带权并查集(向量处理)

    Navigation Nightmare Time Limit: 2000MS   Memory Limit: 30000K Total Submissions: 5939   Accepted: 2 ...

  7. 【BZOJ-4690】Never Wait For Weights 带权并查集

    4690: Never Wait for Weights Time Limit: 15 Sec  Memory Limit: 256 MBSubmit: 88  Solved: 41[Submit][ ...

  8. hdu3038(带权并查集)

    题目链接: http://acm.split.hdu.edu.cn/showproblem.php?pid=3038 题意: n表示有一个长度为n的数组, 接下来有m行形如x, y, d的输入, 表示 ...

  9. 洛谷OJ P1196 银河英雄传说(带权并查集)

    题目描述 公元五八○一年,地球居民迁移至金牛座α第二行星,在那里发表银河联邦 创立宣言,同年改元为宇宙历元年,并开始向银河系深处拓展. 宇宙历七九九年,银河系的两大军事集团在巴米利恩星域爆发战争.泰山 ...

随机推荐

  1. c++ string类使用及用string类解决整行字符串输入

    下面随笔给出c++ string类使用及用string类解决整行字符串输入. string类 使用字符串类string表示字符串 string实际上是对字符数组操作的封装 string类常用的构造函数 ...

  2. EF Core中通过Fluent API完成对表的配置

    EF Core中通过Fluent API完成对表的配置 设置实体在数据库中的表名 通过ToTable可以为数据模型在数据库中自定义表名,如果不配置,则表名为模型名的复数形式 public class ...

  3. Learn Python the Hard Way,ex37-2

    本练习为复习python的符号和关键字 数据类型有:True False None Strings numbers floats lists dict tuple set ""&q ...

  4. FreeBSD 的xfce 终端动态标题不显示问题解决了:

    tcsh配置,home目录创建.tcshrc, 写入以下配置 alias h history 25 alias j jobs -l alias la ls -aF alias lf ls -FA al ...

  5. LNMP配置——Nginx配置 ——域名重定向

    一.配置 #vi /usr/local/nginx/conf/vhost/test.com.conf 写入: server { listen 80; server_name test.com test ...

  6. python基础学习之类

    面向对象和面向过程 面向过程:以吃饭为例,即为 煮饭.洗菜.洗碗.切菜.炒菜.出锅.吃饭面向对象:目标对象做完,直接吃疑问点:1.面向对象就是把过程用函数封装起来,随时调用?:2.面向过程就是每次都把 ...

  7. 2019 GDUT Rating Contest I : Problem B. Teamwork

    题面: 传送门 B. Teamwork Input file: standard input Output file: standard output Time limit: 1 second Memor ...

  8. python之pillow模块学习--验证码的生成和破解

    一.基础学习 在Python中,有一个优秀的图像处理框架,就是PIL库,pip install pillow 示例1 from PIL import Image # 读取当前图片 im = Image ...

  9. ch1_6_5求解旋转词问题

    import java.util.Scanner; public class ch1_6_5求解旋转词问题 { public static void main(String[] args) { // ...

  10. P1328_生活大爆炸版石头剪刀布(JAVA语言)

    题目描述 石头剪刀布是常见的猜拳游戏:石头胜剪刀,剪刀胜布,布胜石头.如果两个人出拳一 样,则不分胜负.在<生活大爆炸>第二季第8集中出现了一种石头剪刀布的升级版游戏. 升级版游戏在传统的 ...