NOIP 模拟 9 斐波那契
题解
这是一道推规律的题。
首先,这道题送分不少,先考虑 \(70pts\),直接暴力 \(\mathcal O(n)\) 建边,\(\mathcal O(logn)\) 求 \(lca\)
其次对于 \(|a_i-b_i|\leq 1\) 的情况,直接输出 \(1\),原因显然。
那么正解是 \(fibonacci\),我们设 \(f_i\) 表示第 \(i\) 个月的兔子数量,那么我们根据题意,发现转移为 \(f_i=f_{i-1}+f_{i-2}\),因为只有出生两个月的兔子能生。
那么对于一个第 \(i\) 月出生的兔子,其编号为 \(id_i=f_{i-1}+j\),\(j\) 为其父亲编号,那么我们就可以根据此来求父亲。
这就是一个完美的 \(fibonacci\)。所以我们可以预处理出 \(fibonacci\),然后二分,再根据求 \(lca\) 的思想跳,因为树高很小,所以我们可以视为常数。
复杂度 \(\mathcal O(mlogn)\)
Code:
#include<bits/stdc++.h>
#define ri register signed
#define p(i) ++i
#define int long long
using namespace std;
namespace IO{
char buf[1<<21],*p1=buf,*p2=buf;
#define gc() p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++
inline int read() {
register int x=0,f=1;char ch=gc();
while(ch<'0'||ch>'9') {if (ch=='-') f=-1;ch=gc();}
while(ch>='0'&&ch<='9') {x=(x<<1)+(x<<3)+(ch^48);ch=gc();}
return x*f;
}
}
using IO::read;
namespace nanfeng{
#define cmax(x,y) ((x)>(y)?(x):(y))
#define cmin(x,y) ((x)>(y)?(y):(x))
#define FI FILE *IN
#define FO FILE *OUT
static const int N=63;
int f[N],m;
int lca(int a,int b) {
int da=lower_bound(f,f+61,a)-f,db=lower_bound(f,f+61,b)-f;
if (da>db) swap(da,db),swap(a,b);
while(a!=b) {
b=b-f[lower_bound(f,f+61,b)-f-1];
db=lower_bound(f,f+61,b)-f;
if (da>db) swap(da,db),swap(a,b);
}
return a;
}
inline int main() {
// FI=freopen("nanfeng.in","r",stdin);
// FO=freopen("nanfeng.out","w",stdout);
f[0]=f[1]=1;
for (ri i(2);i<=62;p(i)) f[i]=f[i-1]+f[i-2];
f[0]=0;//为了防止二分时边界溢出,f[0]处理为0
m=read();
for (ri i(1);i<=m;p(i)) {
int a=read(),b=read();
printf("%lld\n",lca(a,b));
}
return 0;
}
#undef int
}
int main() {return nanfeng::main();}
NOIP 模拟 9 斐波那契的更多相关文章
- NOIP模拟题 斐波那契数列
题目大意 给定长度为$n$序列$A$,将它划分成尽可能少的若干部分,使得任意部分内两两之和均不为斐波那契数列中的某一项. 题解 不难发现$2\times 10^9$之内的斐波那契数不超过$50$个 先 ...
- noip模拟赛 斐波那契
分析:暴力分有90,真良心啊. a,b这么大,连图都建不出来,肯定是有一个规律.把每个点的父节点写出来:0 1 1 12 123 12345 12345678,可以发现每一个循环的长度刚好是斐波那契数 ...
- noip模拟9[斐波那契·数颜色·分组](洛谷模拟测试)
这次考试还是挺好的 毕竟第一题被我给A了,也怪这题太简单,规律一眼就看出来了,但是除了第一题,剩下的我只有30pts,还是菜 第二题不知道为啥我就直接干到树套树了,线段树套上一个权值线段树,然后我发现 ...
- 2019.8.3 NOIP模拟测试12 反思总结【P3938 斐波那契,P3939 数颜色,P3940 分组】
[题解在下面] 早上5:50,Gekoo同学来到机房并表态:“打暴力,打暴力就对了,打出来我就赢了.” 我:深以为然. (这是个伏笔) 据说hzoi的人还差两次考试[现在是一次了]就要重新分配机房,不 ...
- 2019.8.3 [HZOI]NOIP模拟测试12 A. 斐波那契(fibonacci)
2019.8.3 [HZOI]NOIP模拟测试12 A. 斐波那契(fibonacci) 全场比赛题解:https://pan.baidu.com/s/1eSAMuXk 找规律 找两个节点的lca,需 ...
- 20190803 NOIP模拟测试12「斐波那契(fibonacci)· 数颜色 · 分组 」
164分 rank11/64 这次考的不算太差,但是并没有多大的可能性反超(只比一小部分人高十几分而已),时间分配还是不均,T2两个半小时,T1半个小时,T3-额十几分钟吧 然额付出总是与回报成反比的 ...
- NOIP模拟赛T3 斐波那契
1.题目 求 \[\sum_{i=1}^n \sum_{j=1}^m \gcd(F_i,F_j) \] 其中 \(F_k\) 表示斐波那契数列的第 \(k\) 项,对 \(10^9 + 7\) 取模. ...
- Python基础(二):斐波那契数列、模拟cp操作、生成8位随机密码
一.斐波那契数列 目标: 编写fib.py脚本,主要要求如下: 输出具有10个数字的斐波那契数列 使用for循环和range函数完成 改进程序,要求用户输入一个数字,可以生成用户需要长度的斐波那契数列 ...
- 【洛谷mNOIP模拟赛Day1】T1 斐波那契
题目传送门:https://www.luogu.org/problemnew/show/P3938 这题出得特别吼啊~~ 通过打表或者大胆猜想斐波那契数列的一些性质,我们不难发现对于一只兔子$x$,其 ...
随机推荐
- Kotlin Coroutine(协程): 一、样例
@ 目录 前言 一.直接上例子 1.延时任务. 2.异步任务 3.并行任务: 4.定时任务: 总结 前言 你还在用 Hanlder + Message? 或者 AsyncTask? 你还在用 Rxja ...
- vue3 script setup 定稿
vue script setup 已经官宣定稿.本文主要翻译了来自 0040-script-setup 的内容. 摘要 在单文件组件(SFC)中引入一个新的 <script> 类型 set ...
- Python - 字符串常用函数详解
str.index(sub, start=None, end=None) 作用:查看sub是否在字符串中,在的话返回索引,且只返回第一次匹配到的索引:若找不到则报错:可以指定统计的范围,[start, ...
- 求数组的子数组之和的最大值IV
在之前的基础上又安排了二维数组的,在课上一开始是理解错要求了,简单的以为用循环数组就能解决,但是却忽视了子数组是否能构成矩形,之后课下和同学们讨论,主要是多重遍历,但是我还是没搞明白怎么构成新的二维数 ...
- PAT乙级:1092 最好吃的月饼 (20分)
PAT乙级:1092 最好吃的月饼 (20分) 题干 月饼是久负盛名的中国传统糕点之一,自唐朝以来,已经发展出几百品种. 若想评比出一种"最好吃"的月饼,那势必在吃货界引发一场腥风 ...
- SSM整合文件框架
1.项目架构如图 web3.0项目,tomcat9.0,自动生成web.xml文件 按照mybatis配置,先自动生成dao层,更改相应信息 我mybatis如何配置: https://www.c ...
- Ubuntu 19.10安装Wine软件
======================================== 我使用的操作系统版本为Ubuntu 19.10 64位,如果是32位Ubuntu19.10则可以跳过步骤一 1.添加 ...
- 第八篇 -- 对数据库mysql进行连接并压测
参考链接:https://blog.csdn.net/laofashi2015/article/details/81296929 工具:mysql-8.0.12-winx64,apache-jmete ...
- Springboot中mybatis执行逻辑源码分析
Springboot中mybatis执行逻辑源码分析 在上一篇springboot整合mybatis源码分析已经讲了我们的Mapper接口,userMapper是通过MapperProxy实现的一个动 ...
- 微信小程序对接显示阿里云数据库数据
现实需求 在项目中需求,有时候现场设备发生故障,需要远程的人员知道.除了邮件方式,以微信小程序的方式也很好.今天进行尝试,并制作了一个demo版本. 1.微信小程序申请制作前端 1.1lists文件( ...