题解

这是一道推规律的题。

首先,这道题送分不少,先考虑 \(70pts\),直接暴力 \(\mathcal O(n)\) 建边,\(\mathcal O(logn)\) 求 \(lca\)

其次对于 \(|a_i-b_i|\leq 1\) 的情况,直接输出 \(1\),原因显然。

那么正解是 \(fibonacci\),我们设 \(f_i\) 表示第 \(i\) 个月的兔子数量,那么我们根据题意,发现转移为 \(f_i=f_{i-1}+f_{i-2}\),因为只有出生两个月的兔子能生。

那么对于一个第 \(i\) 月出生的兔子,其编号为 \(id_i=f_{i-1}+j\),\(j\) 为其父亲编号,那么我们就可以根据此来求父亲。

这就是一个完美的 \(fibonacci\)。所以我们可以预处理出 \(fibonacci\),然后二分,再根据求 \(lca\) 的思想跳,因为树高很小,所以我们可以视为常数。

复杂度 \(\mathcal O(mlogn)\)

Code:
#include<bits/stdc++.h>
#define ri register signed
#define p(i) ++i
#define int long long
using namespace std;
namespace IO{
char buf[1<<21],*p1=buf,*p2=buf;
#define gc() p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++
inline int read() {
register int x=0,f=1;char ch=gc();
while(ch<'0'||ch>'9') {if (ch=='-') f=-1;ch=gc();}
while(ch>='0'&&ch<='9') {x=(x<<1)+(x<<3)+(ch^48);ch=gc();}
return x*f;
}
}
using IO::read;
namespace nanfeng{
#define cmax(x,y) ((x)>(y)?(x):(y))
#define cmin(x,y) ((x)>(y)?(y):(x))
#define FI FILE *IN
#define FO FILE *OUT
static const int N=63;
int f[N],m;
int lca(int a,int b) {
int da=lower_bound(f,f+61,a)-f,db=lower_bound(f,f+61,b)-f;
if (da>db) swap(da,db),swap(a,b);
while(a!=b) {
b=b-f[lower_bound(f,f+61,b)-f-1];
db=lower_bound(f,f+61,b)-f;
if (da>db) swap(da,db),swap(a,b);
}
return a;
}
inline int main() {
// FI=freopen("nanfeng.in","r",stdin);
// FO=freopen("nanfeng.out","w",stdout);
f[0]=f[1]=1;
for (ri i(2);i<=62;p(i)) f[i]=f[i-1]+f[i-2];
f[0]=0;//为了防止二分时边界溢出,f[0]处理为0
m=read();
for (ri i(1);i<=m;p(i)) {
int a=read(),b=read();
printf("%lld\n",lca(a,b));
}
return 0;
}
#undef int
}
int main() {return nanfeng::main();}

NOIP 模拟 9 斐波那契的更多相关文章

  1. NOIP模拟题 斐波那契数列

    题目大意 给定长度为$n$序列$A$,将它划分成尽可能少的若干部分,使得任意部分内两两之和均不为斐波那契数列中的某一项. 题解 不难发现$2\times 10^9$之内的斐波那契数不超过$50$个 先 ...

  2. noip模拟赛 斐波那契

    分析:暴力分有90,真良心啊. a,b这么大,连图都建不出来,肯定是有一个规律.把每个点的父节点写出来:0 1 1 12 123 12345 12345678,可以发现每一个循环的长度刚好是斐波那契数 ...

  3. noip模拟9[斐波那契·数颜色·分组](洛谷模拟测试)

    这次考试还是挺好的 毕竟第一题被我给A了,也怪这题太简单,规律一眼就看出来了,但是除了第一题,剩下的我只有30pts,还是菜 第二题不知道为啥我就直接干到树套树了,线段树套上一个权值线段树,然后我发现 ...

  4. 2019.8.3 NOIP模拟测试12 反思总结【P3938 斐波那契,P3939 数颜色,P3940 分组】

    [题解在下面] 早上5:50,Gekoo同学来到机房并表态:“打暴力,打暴力就对了,打出来我就赢了.” 我:深以为然. (这是个伏笔) 据说hzoi的人还差两次考试[现在是一次了]就要重新分配机房,不 ...

  5. 2019.8.3 [HZOI]NOIP模拟测试12 A. 斐波那契(fibonacci)

    2019.8.3 [HZOI]NOIP模拟测试12 A. 斐波那契(fibonacci) 全场比赛题解:https://pan.baidu.com/s/1eSAMuXk 找规律 找两个节点的lca,需 ...

  6. 20190803 NOIP模拟测试12「斐波那契(fibonacci)· 数颜色 · 分组 」

    164分 rank11/64 这次考的不算太差,但是并没有多大的可能性反超(只比一小部分人高十几分而已),时间分配还是不均,T2两个半小时,T1半个小时,T3-额十几分钟吧 然额付出总是与回报成反比的 ...

  7. NOIP模拟赛T3 斐波那契

    1.题目 求 \[\sum_{i=1}^n \sum_{j=1}^m \gcd(F_i,F_j) \] 其中 \(F_k\) 表示斐波那契数列的第 \(k\) 项,对 \(10^9 + 7\) 取模. ...

  8. Python基础(二):斐波那契数列、模拟cp操作、生成8位随机密码

    一.斐波那契数列 目标: 编写fib.py脚本,主要要求如下: 输出具有10个数字的斐波那契数列 使用for循环和range函数完成 改进程序,要求用户输入一个数字,可以生成用户需要长度的斐波那契数列 ...

  9. 【洛谷mNOIP模拟赛Day1】T1 斐波那契

    题目传送门:https://www.luogu.org/problemnew/show/P3938 这题出得特别吼啊~~ 通过打表或者大胆猜想斐波那契数列的一些性质,我们不难发现对于一只兔子$x$,其 ...

随机推荐

  1. 测试基础(四)Jmeter基础使用

    前言 通过测试基础(三) Jmeter安装 - 大风北吹 - 博客园 (cnblogs.com)安装完成Jmeter后,就可以使用Jmeter进行性能测试. 一.线程组 (1).线程组分类 Jmete ...

  2. 配置Mac 终端高亮

    mac下所有vim的配色方案的样式. 下面讲解如何设置这些好看的配色 首先:在终端输入 vim ~/.bash_profile 查看是否有上面提到的某些配色,所有配色均是以.vim结束的,果有的话,再 ...

  3. 「AGC023D」 Go Home

    「AGC023D」 Go Home 传送门 神题. 首先我们可以倒着考虑. 当车到达最后一栋楼的时候,车上一定只有到这栋楼的员工. 当车到达倒数第二栋楼的时候,车上一定只有到达剩下两栋楼的员工. 设这 ...

  4. shell 正则表达式一

    正则表达式用于处理文本,精通运用正则表达式可以有效的解决工作的效率 正则表达式有基础正则表达式和扩展正则表达式区别 grep支持基础的正则表达式,grep -E (egrep)支持扩展正则表达式 1. ...

  5. C语言:特殊点

    编译器给变量分配内存在函数外部定义的变量叫做全局变量(Global Variable),在函数内部定义的变量叫做局部变量(Local Variable)一个变量,即使不给它赋值,它也会有一个默认的值, ...

  6. printf函数返回值

    //返回值:正确返回输出的字符总数,错误返回负值,与此同时,输入输出流错误标志将被置值,可由指示器ferror来检查输入输出流的错误标志. #include <stdio.h> #defi ...

  7. Qt Model/view 小实例 文件目录浏览器

    1. 文件目录浏览器 直接在main.cpp文件中添加下列代码 #include "mainwindow.h" #include <QApplication> #inc ...

  8. Kubernetes部署-RKE自动化部署

    一.简介 RKE:Rancher Kubernetes Engine 一个极其简单,闪电般快速的Kubernetes安装程序,可在任何地方使用. 二.准备工作 I.配置系统 系统:CentOS 7 / ...

  9. swagger是什么(十六)

    前言: swagger:神气十足,大摇大摆 在用Springboot进行开发时,有的实体类上用到了注解@ApiModelProperty("接受人代码"),特此整理此注解的出处及作 ...

  10. mybatis介绍以及配置

    一.概念 1.作用:简化dao层,是框架的一部分,常叫SSM,或SSI 2.历史:之前的版本叫ibatis,三版之后叫mybatis 3.什么是orm?object,relational,mappin ...