Solution -「CF 908D」New Year&Arbitrary Arrangement
\(\mathcal{Description}\)
Link.
给定 \(n,p_a,p_b\),初始有一个空串,每次操作有 \(\frac{p_a}{p_a+p_b}\) 的概率在其后添加字符 \(\texttt{'a'}\),\(\frac{p_b}{p_a+p_b}\) 的概率添加字符 \(\texttt{'b'}\),当子序列 \(\{\texttt{'a'},\texttt{'b'}\}\) 的个数不小于 \(n\) 时,结束操作。求子序列的期望个数,对 \(10^9+7\) 取模。
\(n\le1000\)。
\(\mathcal{Solution}\)
显然状态,\(f(i,j)\) 表示有 \(i\) 个 \(\texttt{'a'}\),\(j\) 个 \(\{\texttt{'a'},\texttt{'b'}\}\) 的期望串长。为方便转移,令 \(p_a\) 为出现 \(\texttt{'a'}\) 的概率,\(p_b\) 同理。对于一般情况的转移:
\]
当 \(i+j\ge n\),若再出现一个 \(\texttt{'b'}\),操作必然停止。那么:
f(i,j)&=p_b\sum_{k=0}^{+\infty}p_a^k(i+j+k)\\
p_af(i,j)&=p_b\sum_{k=1}^{+\infty}p_a^k(i+j+k-1)\\
(1-p_a)f(i,j)&=p_b\left(i+j+\sum_{k=1}^{+\infty}p_a^k\right)\\
p_bf(i,j)&=p_b\left(i+j+\frac{p_a}{p_b}\right)\\
f(i,j)&=i+j+\frac{p_a}{p_b}
\end{aligned}
\]
而初始状态有:
f(0,0)&=p_af(1,0)+p_bf(0,0)\\
&=\frac{p_a}{1-p_b}f(1,0)\\
&=f(1,0)
\end{aligned}
\]
DP 就好了 w。
\(\mathcal{Code}\)
#include <cstdio>
#include <cstring>
typedef long long LL;
const int MAXN = 1000, MOD = 1e9 + 7;
int n, pa, pb, div, f[MAXN + 5][MAXN + 5];
inline int add ( int a, const int b ) { return ( a += b ) < MOD ? a : a - MOD; }
inline int mul ( LL a, const int b ) { return ( a *= b ) < MOD ? a : a % MOD; }
inline int sub ( int a, const int b ) { return ( a -= b ) < 0 ? a : a + MOD; }
inline int qkpow ( int a, int b ) {
int ret = 1;
for ( ; b; a = mul ( a, a ), b >>= 1 ) ret = mul ( ret, b & 1 ? a : 1 );
return ret;
}
inline int solve ( const int a, const int k ) {
if ( a + k >= n ) return add ( a, add ( k, div ) );
if ( ~ f[a][k] ) return f[a][k];
return f[a][k] = add ( mul ( pa, solve ( a + 1, k ) ), mul ( pb, solve ( a, a + k ) ) );
}
int main () {
int ta, tb;
scanf ( "%d %d %d", &n, &ta, &tb );
memset ( f, -1, sizeof f );
pa = mul ( ta, qkpow ( add ( ta, tb ), MOD - 2 ) );
pb = mul ( tb, qkpow ( add ( ta, tb ), MOD - 2 ) );
div = mul ( pa, qkpow ( pb, MOD - 2 ) );
printf ( "%d\n", solve ( 1, 0 ) );
return 0;
}
Solution -「CF 908D」New Year&Arbitrary Arrangement的更多相关文章
- Solution -「CF 1342E」Placing Rooks
\(\mathcal{Description}\) Link. 在一个 \(n\times n\) 的国际象棋棋盘上摆 \(n\) 个车,求满足: 所有格子都可以被攻击到. 恰好存在 \(k\ ...
- Solution -「CF 1622F」Quadratic Set
\(\mathscr{Description}\) Link. 求 \(S\subseteq\{1,2,\dots,n\}\),使得 \(\prod_{i\in S}i\) 是完全平方数,并最 ...
- Solution -「CF 923F」Public Service
\(\mathscr{Description}\) Link. 给定两棵含 \(n\) 个结点的树 \(T_1=(V_1,E_1),T_2=(V_2,E_2)\),求一个双射 \(\varph ...
- Solution -「CF 923E」Perpetual Subtraction
\(\mathcal{Description}\) Link. 有一个整数 \(x\in[0,n]\),初始时以 \(p_i\) 的概率取值 \(i\).进行 \(m\) 轮变换,每次均匀随机 ...
- Solution -「CF 1586F」Defender of Childhood Dreams
\(\mathcal{Description}\) Link. 定义有向图 \(G=(V,E)\),\(|V|=n\),\(\lang u,v\rang \in E \Leftrightarr ...
- Solution -「CF 1237E」Balanced Binary Search Trees
\(\mathcal{Description}\) Link. 定义棵点权为 \(1\sim n\) 的二叉搜索树 \(T\) 是 好树,当且仅当: 除去最深的所有叶子后,\(T\) 是满的: ...
- Solution -「CF 623E」Transforming Sequence
题目 题意简述 link. 有一个 \(n\) 个元素的集合,你需要进行 \(m\) 次操作.每次操作选择集合的一个非空子集,要求该集合不是已选集合的并的子集.求操作的方案数,对 \(10^9 ...
- Solution -「CF 1023F」Mobile Phone Network
\(\mathcal{Description}\) Link. 有一个 \(n\) 个结点的图,并给定 \(m_1\) 条无向带权黑边,\(m_2\) 条无向无权白边.你需要为每条白边指定边权 ...
- Solution -「CF 599E」Sandy and Nuts
\(\mathcal{Description}\) Link. 指定一棵大小为 \(n\),以 \(1\) 为根的有根树的 \(m\) 对邻接关系与 \(q\) 组 \(\text{LCA}\ ...
随机推荐
- 单元测试 报错 org.junit.runners.model.InvalidTestClassError: Invalid test class 'com.example.xxx' 解决
1.前言 很奇怪 ,单元测试正常执行,但是结束后会报错 org.junit.runners.model.InvalidTestClassError: Invalid test class 'com.e ...
- 第10组 Alpha冲刺 (5/6)(组长)
1.1基本情况 ·队名:今晚不睡觉 ·组长博客:https://www.cnblogs.com/cpandbb/p/13996848.html ·作业博客:https://edu.cnblogs.co ...
- java集合【13】——— Stack源码分析走一波
前言 集合源码分析系列:Java集合源码分析 前面已经把Vector,ArrayList,LinkedList分析完了,本来是想开始Map这一块,但是看了下面这个接口设计框架图:整个接口框架关系如下( ...
- 联盛德 HLK-W806 (十三): 运行FatFs读写FAT和exFat格式的SD卡/TF卡
目录 联盛德 HLK-W806 (一): Ubuntu20.04下的开发环境配置, 编译和烧录说明 联盛德 HLK-W806 (二): Win10下的开发环境配置, 编译和烧录说明 联盛德 HLK-W ...
- [javaweb]strut2-001漏洞分析
Strut2-001 漏洞描述 框架解析JSP页面标签时会对用户输入的Value值获取,在获取对应的Value值中递归解析%{.}造成了二次解析,最终触发表达式注入漏洞,执行任意代码 影响版本 2.0 ...
- Git使用简单教程,从建库到远程操作
本地库初始化 找到项目文件->右键git bash->git init 设置签名 形式: 用户名 邮箱地址 作用: 区分不同开发人员身份 注意:这里设置的签名和登录的远程库的账号密码没有任 ...
- C++多线程之可重入锁
#include<iostream> #include<thread> #include<mutex> using namespace std; recursive ...
- gin中的重定向
package main import ( "github.com/gin-gonic/gin" ) func main() { // HTTP重定向很容易,内部.外部重定向均支持 ...
- 【程序15】成绩>=90分用A表示,60-89分用B表示, 60分以下用C表示。
利用条件运算符的嵌套来完成此题 score = int(input('input score:')) if score >= 90: grade = 'A' elif score >= 6 ...
- Linux深入探索04-Bash shell
----- 最近更新[2021-12-30]----- 本文目录结构预览: 一.简介 二.shell 变量 1.查看变量 2.变量类型 3.变量操作 4.系统常见的全局变量 三.shell 选项 1. ...