http://codeforces.com/contest/787/problem/C

题目大意:有一个长度为n的环,第1个位置是黑洞,其他都是星球。已知在星球上(不含第一个黑洞)有一位神。有两个人,每个人有一个集合的数字,两人进行游戏,每人每轮可以让神从一个星球向后移动x位(x为目前两个人所拥有的集合中的一个任意数字,数字可以重复选)。请求出神在2~n的每一个位置上时,两人分别先手的输赢情况,先手胜利输出WIN,先手必败输出LOOS,会无限循环输出LOOP。

思路:经典的有向图博弈(可惜我不会TAT)。

假定范围是[0,n-1],那么定义dp(i, j)表示是第i个人,在第j个位置先手的情况(三种情况,loop,lose,win)。然后我们知道了在dp[0][0] = dp[1][0] = lose是必败的,所以我们反向回去推即可。然后反向推是利用bfs进行的。

①因为对于某个点,如果是必败态,那么他之间的状态都是必胜的

②如果当前点是必胜态,那么他之前的状态中必然有一个点是必败的。那么也就是说,那么必败的点的出度必然为0。

为什么出度为0就是必败呢。因为对于目前的这个状态,他可以往前面转移,假定他有k种转移方法,那么他的出度就是k。那么,我们定义目前的状态是必胜态,那么他转移出去的必然都是必败态。所以,假如说那个是必胜态,那么我们就对k--。如果k是0了,那么表示转移出去的只有必胜态了,所以当前的状态只能是必败态

感觉理解起来还是简单的^0^,开心

//看看会不会爆int!数组会不会少了一维!
//取物问题一定要小心先手胜利的条件
#include <bits/stdc++.h>
using namespace std;
#pragma comment(linker,"/STACK:102400000,102400000")
#define LL long long
#define ALL(a) a.begin(), a.end()
#define pb push_back
#define mk make_pair
#define fi first
#define se second
#define haha printf("haha\n")
const int maxn = + ;
int dp[][maxn];
int cnt[][maxn];
vector<int> ve[];
int n, k; void solve(){
queue<pair<int ,int> > que;
memset(dp, -, sizeof(dp));
dp[][] = , dp[][] = ;///0为必败,1为必胜
que.push(mk(, )); que.push(mk(, ));
while (!que.empty()){
pair<int, int> p = que.front(); que.pop();
int x = p.fi, y = p.se;
if (dp[x][y] == ){
for (int i = ; i < ve[x ^ ].size(); i++){
int nx = x ^ , ny = (p.se + n - ve[x^][i]) % n;
if (dp[nx][ny] == -){
dp[nx][ny] = ; que.push(mk(nx, ny));
}
}
}
else if (dp[x][y] == ){
for (int i = ; i < ve[x ^ ].size(); i++){
int nx = x ^ , ny = (p.se + n - ve[x^][i]) % n;
cnt[nx][ny]--;
if (cnt[nx][ny] == && dp[nx][ny] == -){
dp[nx][ny] = ; que.push(mk(nx, ny));
}
}
}
}
for (int i = ; i < ; i++){
for (int j = ; j < n; j++){
if (dp[i][j] == -) printf("Loop ");
else if (dp[i][j] == ) printf("Lose ");
else printf("Win ");
}
cout << endl;
}
} int main(){
cin >> n >> k;
for (int i = ; i < n; i++) cnt[][i] = k;
while (k--){
int u; cin >> u;
ve[].pb(u);
}
cin >> k;
for (int i = ; i < n; i++) cnt[][i] = k;
while (k--){
int u; cin >> u;
ve[].pb(u);
}
solve();
return ;
}

有向图博弈+出度的结合 Codeforces Round #406 (Div. 2) C的更多相关文章

  1. 【动态规划】Codeforces Round #406 (Div. 2) C.Berzerk

    有向图博弈问题. 能转移到一个必败态的就是必胜态. 能转移到的全是必胜态的就是必败态. 转移的时候可以用队列维护. 可以看这个 http://www.cnblogs.com/quintessence/ ...

  2. Codeforces #Round 406(Div.2)

    来自FallDream的博客,未经允许,请勿转载,谢谢. ------------------------------------------------------- 大家好,我是一个假人.在学习O ...

  3. Codeforces Round #406 (Div. 1) B. Legacy 线段树建图跑最短路

    B. Legacy 题目连接: http://codeforces.com/contest/786/problem/B Description Rick and his co-workers have ...

  4. Codeforces Round #406 (Div. 1) A. Berzerk 记忆化搜索

    A. Berzerk 题目连接: http://codeforces.com/contest/786/problem/A Description Rick and Morty are playing ...

  5. Codeforces Round #406 (Div. 2)滚粗记

    A 一看到题,不是一道解不定方程的裸题吗,调了好久exgcd. 其实一个for就好了啊 B 一直WA ON TEST 7真是烦,一想会不会是编号太大了,又写了一个map版本,无用. 调了好久好久才发现 ...

  6. 维护前面的position+主席树 Codeforces Round #406 (Div. 2) E

    http://codeforces.com/contest/787/problem/E 题目大意:给你n块,每个块都有一个颜色,定义一个k,表示在区间[l,r]中最多有k中不同的颜色.另k=1,2,3 ...

  7. 区间->点,点->区间,线段树优化建图+dijstra Codeforces Round #406 (Div. 2) D

    http://codeforces.com/contest/787/problem/D 题目大意:有n个点,三种有向边,这三种有向边一共加在一起有m个,然后起点是s,问,从s到所有点的最短路是多少? ...

  8. 【转】Codeforces Round #406 (Div. 1) B. Legacy 线段树建图&&最短路

    B. Legacy 题目连接: http://codeforces.com/contest/786/problem/B Description Rick and his co-workers have ...

  9. Codeforces Round #406 (Div. 1)

    B题打错调了半天,C题想出来来不及打,还好没有挂题 AC:AB Rank:96 Rating:2125+66->2191 A.Berzerk 题目大意:有一个东东在长度为n的环上(环上点编号0~ ...

随机推荐

  1. scrum立会报告+燃尽图(第二周第六次)

    此作业要求参见:https://edu.cnblogs.com/campus/nenu/2018fall/homework/2251 一.小组介绍 组名:杨老师粉丝群 组长:乔静玉 组员:吴奕瑶.公冶 ...

  2. OpenCV学习笔记——imread、imwrite以及imshow

    1.imread Loads an image from a file. 从文件中读取图像. C++: Mat imread(const string& filename, int flags ...

  3. C/C++学习计划

    学习内容:C语言程序设计精髓/计算机程序设计(C++) 学习理由:基础比较薄弱,想先打好基础. 时间安排:每天学习两课时. mooc地址:http://www.icourse163.org/home. ...

  4. Mac下Git的基础操作

    目前最火的版本控制软件是Git了吧,今天简单梳理一下Mac下Git的基础操作~~ 一.什么是Git Git是一个分布式代码管理工具,用于敏捷的处理或大或小的项目,类似的工具还有svn. 基于Git的快 ...

  5. (六)hadoop系列之__hadoop分布式集群环境搭建

    配置hadoop(master,slave1,slave2) 说明: NameNode: master DataNode: slave1,slave2 ------------------------ ...

  6. 对mysql联合索引中的字段进行合理排序

    在MySQL的where条件中,有时会用到很多的条件,通常为了加快速度会把这些字段放到联合索引中,可以更快的提高搜索速度: 但是对联合索引中字段顺序的合理排序,便更能提高速度 例子:select * ...

  7. 第115天:Ajax 中artTemplate模板引擎(一)

    一.不分离与分离的比较 1.前后端不分离,以freemarker模板引擎为例,看一下不分离的前后端请求的流程是什么样的? 从上图可以看出,前后端开发人员的工作耦合主要在(3)Template的使用.后 ...

  8. bzoj1050[HAOI2006]旅行comf(枚举+贪心+并查集)

    Description 给你一个无向图,N(N<=500)个顶点, M(M<=5000)条边,每条边有一个权值Vi(Vi<30000).给你两个顶点S和T,求一条路径,使得路径上最大 ...

  9. 【bzoj2656】[Zjoi2012]数列(sequence) 高精度

    题目描述 给出数列 $A$ 的递推公式如下图所示,$T$ 次给定 $n$ ,求 $A_n$ . 输入 输入文件第一行有且只有一个正整数T,表示测试数据的组数.第2-T+1行,每行一个非负整数N. 输出 ...

  10. 插件-监控页面加载之loading

    查看效果点https://icedjuice.github.io/plug-in/loading/loading.html 简单易用的loading插件,该插件并不是真正的监控页面的资源加载过程,而是 ...