Asia-Dhaka 2017
Asia-Dhaka 2017
A - Brick Walls
题目描述:如下图,编坐标与路径,给出两个坐标,问两个坐标的最短距离是多少。
solution
先阶梯型地走,然后注意“中”字走法。
时间复杂度:\(O(1)\)(每次询问)
B - Bracket Sequence
题目描述:有一个括号序列,该括号序列有四种括号,问以位置\(i\)开头的合法括号序列最长有多长。
solution
首先匹配好括号,然后将相邻的合法括号序列处理一下即可。
时间复杂度:\(O(n)\)
C - Making a Team
题目描述:有\(n\)个人,从中选择\(m\)个人组成一队,队中有四个职位,每个职位选择一个人担任,但一个人可以有很多职位,问有多少种组队方案。
solution
分类讨论:
- 从\(n\)个人中选一个人担任四个职位,其他人可选可不选。
- 从\(n\)个人中选两个人担任四个职位,其他人可选可不选。
- 从\(n\)个人中选三个人担任四个职位,其他人可选可不选。
- 从\(n\)个人中选四个人担任四个职位,其他人可选可不选。
时间复杂度:\(O(1)\)
D - Christmas Tree
题目描述:给出一棵树(\(n\)个点),从树上删掉一些点(如果删去的点不是叶子节点,则删掉以该点为根的子树),使得每个点有\(m\)个儿子。问最终树上最多还有多少个点。
solution
树形dp
。
时间复杂度:\(O(n)\)(每次询问)
E - Leap Birthdays
题目描述:给出一个人的出生年月日,问到某一年的最后一天为止,这个人过了多少次生日。
solution
模拟。
时间复杂度:\(O(1000)\)(每次询问)
F - Megamind
题目描述:有个人用一支枪去打怪,怪物一开始有\(E\)生命值,枪有\(K\)发子弹,每颗子弹可造成\(P\)点伤害,当\(K\)发子弹打完后,需要时间装子弹,在这段时间怪物会恢复\(R\)生命值。问至少需要多少枪才能打死这个怪物,或者永远打不死。
solution
简单数学。
时间复杂度:\(O(1)\)(每次询问)
G - XOR Path
题目描述:给出一棵树,树边有权值,一条路径的值为路径的边的权值的异或和。输出路径的值为\(0\)~\(2^{16}-1\)每个数对应的路径数。
solution
根据\(XOR\)的性质,两点形成路径的值可以看做这两点到根的路径的值的异或和。然后问题就转化为类似FFT
的问题,用快速沃尔什变换解决。
时间复杂度:\(O(nlogn)\)
H - Angry Birds Transformers
题目描述:二维平面第一象限上有一些点,有一个人沿着\(x\)轴正向移动,他的视角范围为\(90^{\circ}\),视角范围关于\(x=p\)对称(\(p\)为他走到的位置)。问他最多能同时看到多少个点。
solution
将点映射到\(x\)轴上(开始看到该点的位置以及最后看到该点的位置),然后求个前缀和的最大值即可。
时间复杂度:\(O(n)\)
I - Divisors
题目描述:设\(d(n)\)表示\(n\)的约数个数,\(AF(n)=\prod_{i=1}^{n} i!\),求\(d(AF(n))\)
solution
\(AF(n)=\prod_{i=1}^{n} i!=\prod_{i=1}^{n} i^{n-i+1}\)
枚举质因数\(d\),\(d\)的指数\(i\),现要算出\(AF(n)\)有多少质因数\(d\)
设\(d^i\)的倍数有\(x\)个,\(x=\frac{n}{d^i}\)
\(s_d=\sum_{i=0} (n-d^i+1)x+\frac{x(x-1)}{2} d^i\)
答案就是\(\prod (s_d+1)\)
时间复杂度:\(O(\sigma(n)logn)\)(每次询问)
J - Substring Sorting
题目描述:给出一个字符串,询问长度为\(K\)的子串按字典序排好后(并去重,只保留位置较前的),排名为\(M\)的字符串的第一个字符的位置。
solution
后缀数组+线段树,但去重的问题还没解决(不会只保留位置较前的)
时间复杂度:\(O(nlogn)\)
K - Bermuda Polygon
solution
听说是半球上凸包。
Asia-Dhaka 2017的更多相关文章
- ICPC Asia Nanning 2017 I. Rake It In (DFS+贪心 或 对抗搜索+Alpha-Beta剪枝)
题目链接:Rake It In 比赛链接:ICPC Asia Nanning 2017 Description The designers have come up with a new simple ...
- ICPC Asia Nanning 2017 L. Twice Equation (规律 高精度运算)
题目链接:Twice Equation 比赛链接:ICPC Asia Nanning 2017 Description For given \(L\), find the smallest \(n\) ...
- ICPC Asia Nanning 2017 F. The Chosen One (高精度运算)
题目链接:The Chosen One 比赛链接:ICPC Asia Nanning 2017 题意 \(t\) 组样例,每组给出一个整数 \(n(2\le n\le 10^{50})\),求不大于 ...
- ICPC Asia Nanning 2017 F. The Chosen One (大数、规律、2的k次幂)
Welcome to the 2017 ACM-ICPC Asia Nanning Regional Contest.Here is a breaking news. Now you have a c ...
- Regionals 2012 :: Asia - Dhaka
水 B Wedding of Sultan 题意:求每个点的度数 分析:可以在,每个字母的的两个端点里求出的的出度,那么除了起点外其他点还有一个入度,再+1 /******************** ...
- Gym102040 .Asia Dhaka Regional Contest(寒假自训第9场)
B .Counting Inversion 题意:给定L,R,求这个区间的逆序对数之和.(L,R<1e15) 思路:一看这个范围就知道是数位DP. 只是维护的东西稍微多一点,需要记录后面的各种数 ...
- 2018-2019 ACM-ICPC, Asia Dhaka Regional Contest
目录 Contest Info Solutions B. Counting Inversion C. Divisors of the Divisors of An Integer E. Helping ...
- 2018-2019 ACM-ICPC, Asia Dhaka Regional Contest C.Divisors of the Divisors of An Integer (数论)
题意:求\(n!\)的每个因子的因子数. 题解:我们可以对\(n!\)进行质因数分解,这里可以直接用推论快速求出:https://5ab-juruo.blog.luogu.org/solution-p ...
- Java 8新特性之Date/Time(八恶人-4)
Mannix‘s Marauders -Chris Mannix 曼尼克斯掠夺者 曼尼克斯·克里斯 “I'm the new sheriff of Red Rock.” “我是红石镇的新任警长” ...
- java国际化之时区问题处理
原文:https://moon-walker.iteye.com/blog/2396035 在国际化的项目中需要处理的日期时间问题主要有两点: 1.日期时间的国际化格式问题处理: 2.日期时间的时区问 ...
随机推荐
- 【Linux】无法将 Ethernet0 连接到虚拟网络“VMnet8”
Linux安装centos之后,可能会出现ipconfig命令之后没有看到eth0信息,只有lo.log日志包的错为:无法将 Ethernet0 连接到虚拟网络“VMnet8” 解决办法有: 1.在虚 ...
- [十七]SpringBoot 之 使用自定义的properties
Springboot使用application.properties默认了很多配置.但需要自己添加一些配置的时候,我们应该怎么做呢. 如果继续在application.properties中添加 如: ...
- TCP(Transmission Control Protocol)学习笔记
一.TCP(Transmission Control Protocol)原理介绍(参考维基百科) TCP连接包括三种状态:连接建立.数据传送和连接终止. TCP用三路握手(three-way hand ...
- 给自己的小练习19-[kuangbin带你飞]专题九连通图
没有写题解.补一波 Network of Schools 问题1:求有向图中入度为0的点个数 问题2:使得整个图变成一个联通分量 问题1直接缩点统计 问题2=max(入度为0的点,出度为0的点),注意 ...
- [HNOI2011]XOR和路径 概率期望 高斯消元
题面 题解:因为异或不太好处理,,,因此按位来算,这样最后的答案就是每一位上的值乘对应的权值再求和.本着期望要倒退的原则,,,我们设$f[i]$表示从$i$到$n$,xor和为1的概率.那么观察$xo ...
- Hyperledger Fabric 实战(十二): Fabric 源码本地调试
借助开发网络调试 fabric 源码本地调试 准备工作 IDE Goland Go 1.9.7 fabric-samples 模块 chaincode-docker-devmode fabric 源码 ...
- Flash 0day CVE-2018-4878 漏洞复现
0x01 前言 Adobe公司在当地时间2018年2月1日发布了一条安全公告: https://helpx.adobe.com/security/products/flash-player/aps ...
- Redis Scan迭代器遍历操作原理(一)
Redis在2.8.0版本新增了众望所归的scan操作,从此再也不用担心敲入了keys*, 然后举起双手看着键盘等待漫长的系统卡死了··· 命令的官方介绍在这里, 中文版由huangz同学细心翻译了, ...
- Linux(五)shell编程基础
一.Linux shell简介 1.shell概述 Shell 是用户与内核进行交互操作的一种接口,目前最流行的 Shell 称为 bash Shell Shell 是一门编程语言& ...
- 【bzoj4212】神牛的养成计划
Portal --> bzoj4212 Description 给你\(n\)个字符串,接下来有\(m\)个询问,每个询问由两个给定的字符串\(s_1\)和\(s_2\)组成,对于每个询问输 ...