机器学习可分为监督学习和无监督学习。有监督学习就是有具体的分类信息,比如用来判定输入的是输入[a,b,c]中的一类;无监督学习就是不清楚最后的分类情况,也不会给目标值。

  K-近邻算法属于一种监督学习分类算法,该方法的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。

  需要进行分类,分类的依据是什么呢,每个物体都有它的特征点,这个就是分类的依据,特征点可以是很多,越多分类就越精确。

  机器学习就是从样本中学习分类的方式,那么就需要输入我们的样本,也就是已经分好类的样本,比如特征点是A , B2个特征,输入的样本甲乙丙丁,分别为[[1.0, 1.1], [1.0, 1.0], [0., 0.], [0.0, 0.1]]。 那么就开始输入目标值,当然也要给特征了,最终的目标就是看特征接近A的多还是B的多,如果把这些当做坐标,几个特征点就是几纬坐标,那么就是坐标之间的距离。那么问题来了,要怎么看接近A的多还是B的多。

  我就直接贴代码了,基于python,首先输入特征量labels和样本group。

一开始需要导入的模块

 #coding=utf-8 

 #科学计算包
#from numpy import *
import numpy
#运算符模块
import operator

  数据样本和分类模拟

#手动建立一个数据源矩阵group,和数据源的分类结果labels
def createDataSet():
group = numpy.array([[1.0, 1.1], [1.0, 1.0], [5., 2.], [5.0, 0.1]])
labels = ['A', 'A', 'B', 'B']
return group, labels

  然后进行KNN算法。

# newInput为输入的目标,dataset是样本的矩阵,label是分类,k是需要取的个数
def kNNClassify(newInput, dataSet, labels, k):
#读取矩阵的行数,也就是样本数量
numSamples = dataSet.shape[0]
print 'numSamples: ' ,numSamples #变成和dataSet一样的行数,行数=原来*numSamples,列数=原来*1 ,然后每个特征点和样本的点进行相减
diff = numpy.tile(newInput, (numSamples, 1)) - dataSet
print 'diff: ',diff #平方
squaredDiff = diff ** 2
print "squaredDiff: ",squaredDiff #axis=0 按列求和,1为按行求和
squaredDist = numpy.sum(squaredDiff, axis = 1)
print "squaredDist: ",squaredDist #开根号,距离就出来了
distance = squaredDist ** 0.5
print "distance: ",distance #按大小逆序排列
sortedDistIndices = numpy.argsort(distance)
print "sortedDistIndices: ",sortedDistIndices classCount = {}
for i in range(k):
#返回距离(key)对应类别(value)
voteLabel = labels[sortedDistIndices[i]]
print "voteLabel: " ,voteLabel # 取前几个K值,但是K前几个值的大小没有去比较,都是等效的
classCount[voteLabel] = classCount.get(voteLabel, 0) + 1
print "classCount: " ,classCount
maxCount = 0
#返回占有率最大的
sortedClassCount=sorted(classCount.iteritems(),key=operator.itemgetter(1),reverse=True) return sortedClassCount[0][0]

最后进行测试

 dataSet, labels = createDataSet()

 testX = numpy.array([0, 0])
k = 3
outputLabel = kNNClassify(testX, dataSet, labels, k)
print "Your input is:", testX, "and classified to class: ", outputLabel

可以发现输出

 numSamples:  4
diff: [[-1. -1.1]
[-1. -1. ]
[-5. -2. ]
[-5. -0.1]]
squaredDiff: [[ 1.00000000e+00 1.21000000e+00]
[ 1.00000000e+00 1.00000000e+00]
[ 2.50000000e+01 4.00000000e+00]
[ 2.50000000e+01 1.00000000e-02]]
squaredDist: [ 2.21 2. 29. 25.01]
distance: [ 1.48660687 1.41421356 5.38516481 5.0009999 ]
sortedDistIndices: [1 0 3 2]
voteLabel: A
voteLabel: A
voteLabel: B
classCount: {'A': 2, 'B': 1}
Your input is: [0 0] and classified to class: A

  这里我之前一直有个疑问,关于K的取值,结果也许跟K的取值产生变化,只要在K的取值范围内们所有特征点距离远近也就没有关系了。所以才叫K近邻分类算法

机器学习之K-近邻算法的更多相关文章

  1. 机器学习之K近邻算法(KNN)

    机器学习之K近邻算法(KNN) 标签: python 算法 KNN 机械学习 苛求真理的欲望让我想要了解算法的本质,于是我开始了机械学习的算法之旅 from numpy import * import ...

  2. 【机器学习】k近邻算法(kNN)

    一.写在前面 本系列是对之前机器学习笔记的一个总结,这里只针对最基础的经典机器学习算法,对其本身的要点进行笔记总结,具体到算法的详细过程可以参见其他参考资料和书籍,这里顺便推荐一下Machine Le ...

  3. 第四十六篇 入门机器学习——kNN - k近邻算法(k-Nearest Neighbors)

    No.1. k-近邻算法的特点 No.2. 准备工作,导入类库,准备测试数据 No.3. 构建训练集 No.4. 简单查看一下训练数据集大概是什么样子,借助散点图 No.5. kNN算法的目的是,假如 ...

  4. 机器学习之K近邻算法

    K 近邻 (K-nearest neighbor, KNN) 算法直接作用于带标记的样本,属于有监督的算法.它的核心思想基本上就是 近朱者赤,近墨者黑. 它与其他分类算法最大的不同是,它是一种&quo ...

  5. 机器学习实战-k近邻算法

    写在开头,打算耐心啃完机器学习实战这本书,所用版本为2013年6月第1版 在P19页的实施kNN算法时,有很多地方不懂,遂仔细研究,记录如下: 字典按值进行排序 首先仔细读完kNN算法之后,了解其是用 ...

  6. 【机器学习】K近邻算法——多分类问题

    给定一个训练数据集,对新的输入实例,在训练数据集中找到与该实例最邻近的K个实例,这K个实例的多数属于某个类,就把该类输入实例分为这个类. KNN是通过测量不同特征值之间的距离进行分类.它的的思路是:如 ...

  7. 机器学习2—K近邻算法学习笔记

    Python3.6.3下修改代码中def classify0(inX,dataSet,labels,k)函数的classCount.iteritems()为classCount.items(),另外p ...

  8. 机器学习03:K近邻算法

    本文来自同步博客. P.S. 不知道怎么显示数学公式以及排版文章.所以如果觉得文章下面格式乱的话请自行跳转到上述链接.后续我将不再对数学公式进行截图,毕竟行内公式截图的话排版会很乱.看原博客地址会有更 ...

  9. [机器学习] k近邻算法

    算是机器学习中最简单的算法了,顾名思义是看k个近邻的类别,测试点的类别判断为k近邻里某一类点最多的,少数服从多数,要点摘录: 1. 关键参数:k值 && 距离计算方式 &&am ...

  10. 机器学习:k-NN算法(也叫k近邻算法)

    一.kNN算法基础 # kNN:k-Nearest Neighboors # 多用于解决分裂问题 1)特点: 是机器学习中唯一一个不需要训练过程的算法,可以别认为是没有模型的算法,也可以认为训练数据集 ...

随机推荐

  1. 【转】MySQL性能优化的最佳21条经验

    文章转自: http://blog.csdn.net/waferleo/article/details/7179009 今天,数据库的操作越来越成为整个应用的性能瓶颈了,这点对于Web应用尤其明显.关 ...

  2. SQL汉字转拼音函数-支持首字母、全拼

    SQL汉字转拼音函数-支持首字母.全拼 FROM :http://my.oschina.net/ind/blog/191659 作者不详 --方法一sqlserver汉字转拼音首字母 --调用方法 s ...

  3. 【学习笔记】Struts2之配置文件struts.xml

    在默认情况下,Struts2只自动加载类加载路径下的struts.xml.default-struts.xml和struts-plugin.xml三类文件.但是随着应用规模的增大,系统中Action数 ...

  4. c++语言友元函数和成员函数对运算符重载

    #include<iostream> using namespace std; /******************************************/ /*use mem ...

  5. GitHub上值得关注的iOS开源项目

    1.AFNetworking地址:https://github.com/AFNetworking/AFNetworking用于网络请求 2.JSONKit地址:https://github.com/j ...

  6. C++中有关数组的相关问题

    1.数组长度相关: strlen(from <string.h>)只是针对字符数组才有的,他不包含\0的长度.无法对其他类型求长度.sizeof()则可以对\0发起作用.记住(a.leng ...

  7. HashMap和 Hashtable的比较

    Hashtable 和 HashMap的比较 1.  HashMap可以接受null(HashMap可以接受为null的键值(key)和值(value), HashTable不可以接受为null的键( ...

  8. DLL 生成与使用的全过程(2010-01-18 14:50:17)

    转载自 水滴的博客http://blog.sina.com.cn/spiritofwater   个人学习用 转载▼   分类: 技术 由dll导出的lib文件: 包含了每一个dll导出函数的符号名和 ...

  9. [MySQL] MySQL存储过程常用的函数

    一.字符串类 CHARSET(str) //返回字串字符集 CONCAT (string2  [,... ]) //连接字串 INSTR (string ,substring ) //返回substr ...

  10. C# Mvc异常处理过滤器

    using System; using System.Text; using EMS.Domains.Core; using System.Web.Mvc; using Json.Net; using ...