openjudge 百练 2757:最长上升子序列

总时间限制: 
2000ms

内存限制: 
65536kB
描述
一个数的序列bi,当b1 < b2 < ... < bS的时候,我们称这个序列是上升的。对于给定的一个序列(a1a2, ..., aN),我们可以得到一些上升的子序列(ai1ai2, ..., aiK),这里1 <= i1 < i2 < ... < iK <= N。比如,对于序列(1, 7, 3, 5, 9, 4, 8),有它的一些上升子序列,如(1, 7), (3, 4, 8)等等。这些子序列中最长的长度是4,比如子序列(1, 3, 5, 8).

你的任务,就是对于给定的序列,求出最长上升子序列的长度。

输入
输入的第一行是序列的长度N (1 <= N <= 1000)。第二行给出序列中的N个整数,这些整数的取值范围都在0到10000。
输出
最长上升子序列的长度。
样例输入
7
1 7 3 5 9 4 8
样例输出
4
 /*再做做这道题是因为另一道题目是反利用这个c数组的,这里复习一下*/
#include<iostream>
using namespace std;
#include<cstdio>
#include<cstring>
int n;
#define N 1010
int c[N],f[N],ans=-N,a[N];
int search(int l,int r,int k)
{
if(l==r) return l;
int mid=(l+r+)>>;/*还有这里的+1*/
if(c[mid]>=k) return search(l,mid-,k);/*这里的mid-1是保证是上升序列*/
else return search(mid,r,k);
}
int main()
{
scanf("%d",&n);
for(int i=;i<=n;++i)
scanf("%d",&a[i]);
memset(f,,sizeof(f));
memset(c,,sizeof(c));
for(int i=;i<=n;++i)
{
f[i]=search(,i,a[i])+;/*这里的具体二分过程最好自己手动模拟一下,以防出错*/
c[f[i]]=min(a[i],c[f[i]]);
ans=max(f[i],ans);
}
printf("%d\n",ans);
return ;
}

DP练习 最长上升子序列nlogn解法的更多相关文章

  1. 【算法】最长公共子序列(nlogn)

    转载注明出处:http://blog.csdn.net/wdq347/article/details/9001005 (修正了一些错误,并自己重写了代码) 最长公共子序列(LCS)最常见的算法是时间复 ...

  2. dp之最长上升子序列

    普通做法是O(n^2)下面介绍:最长上升子序列O(nlogn)算法(http://blog.csdn.net/shuangde800/article/details/7474903) /* HDU 1 ...

  3. HDU5748---(记录每个元素的 最长上升子序列 nlogn)

    分析: 给一个序列,求出每个位置结尾的最长上升子序列 O(n^2) 超时 #include "cstdio" #include "algorithm" #def ...

  4. [poj 1533]最长上升子序列nlogn树状数组

    题目链接:http://poj.org/problem?id=2533 其实这个题的数据范围n^2都可以过,只是为了练习一下nlogn的写法. 最长上升子序列的nlogn写法有两种,一种是变形的dp, ...

  5. dp之最长递增子序列模板poj3903

    最长递增子序列,Longest Increasing Subsequence 下面我们简记为 LIS.排序+LCS算法 以及 DP算法就忽略了,这两个太容易理解了. 假设存在一个序列d[1..9] = ...

  6. 最长公共子序列 nlogn

    先来个板子 #include<bits/stdc++.h> using namespace std; , M = 1e6+, mod = 1e9+, inf = 1e9+; typedef ...

  7. dp(最长公共子序列)

    A subsequence of a given sequence is the given sequence with some elements (possible none) left out. ...

  8. HDU 1025 Constructing Roads In JGShining's Kingdom(求最长上升子序列nlogn算法)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1025 解题报告:先把输入按照r从小到大的顺序排个序,然后就转化成了求p的最长上升子序列问题了,当然按p ...

  9. hdu1025 dp(最长上升子序列LIS)

    题意:有一些穷国和一些富国分别排在两条直线上,每个穷国和一个富国之间可以建道路,但是路不能交叉,给出每个穷国和富国的联系,求最多能建多少条路 我一开始在想有点像二分图匹配orz,很快就发现,当我把穷国 ...

随机推荐

  1. Go语言 8 反射

    文章由作者马志国在博客园的原创,若转载请于明显处标记出处:http://www.cnblogs.com/mazg/ Go学习群:415660935 8.1概念和作用 Reflection(反射)在计算 ...

  2. VMware 克隆多台Linux机器并配置IP的方法

    我们首先要知道 VMware 三种网络模式的区别. ①.Bridged(桥接模式):就是将主机网卡与虚拟机虚拟的网卡利用虚拟网桥进行通信.在桥接的作用下,类似于把物理主机虚拟为一个交换机,所有桥接设置 ...

  3. onvif客户端

    前言 做开发有8年时间了,ffmpeg和onvif与我是特别有缘的了(说着玩的,我更认为是因为他们确实强大^_^). ffmpeg在毕业设计时就有用到,5年后做windows.linux播放库时又有用 ...

  4. linux initcall 介绍 (转自http://blog.csdn.net/fenzhikeji/article/details/6860143)

    现在以module_init为例分析initcall在内核中的调用顺序 在头文件init.h中,有如下定义: #define module_init(x)     __initcall(x); 很明显 ...

  5. spring boot注解学习记

    @Component Compent等效于xml文件中的Bean标注,Autowired自动初始化Bean是通过查找Component注解实现的,在增加Component后还是Autowired找不到 ...

  6. 增加Android模拟器空间(Internal Storage)

    转载 http://vase.iteye.com/blog/2114664   初学Android,发现模拟器上有不少限制,譬如标题中的存储限制,无论用ADT Manager如何设置,内部存储空间不会 ...

  7. [转载]Windows服务编写原理及探讨(1)

    有那么一类应用程序,是能够为各种用户(包括本地用户和远程用户)所用的,拥有用户授权级进行管理的能力,并且不论用户是否物理的与正在运行该应用程序的计算机相连都能正常执行,这就是所谓的服务了. (一)服务 ...

  8. php 7.3.3安装问题记录

    1.checking for libzip... not foundconfigure: error: Please reinstall the libzip distribution 参考:http ...

  9. 终止函数 atexit()

    函数名: atexit   头文件:#include<stdlib.h>   功 能: 注册终止函数(即main执行结束后调用的函数)   用 法: int atexit(void (*f ...

  10. Codefroces 735D Taxes(哥德巴赫猜想)

    题目链接:http://codeforces.com/problemset/problem/735/D 题目大意:给一个n,n可以被分解成n1+n2+n3+....nk(1=<k<=n). ...