BZOJ1101 POI2007 Zap


Description

  FGD正在破解一段密码,他需要回答很多类似的问题:对于给定的整数a,b和d,有多少正整数对x,y,满足x<=a,y<=b,并且gcd(x,y)=d。作为FGD的同学,FGD希望得到你的帮助。

Input

  第一行包含一个正整数n,表示一共有n组询问。(1<=n<= 50000)接下来n行,每行表示一个询问,每行三个正整数,分别为a,b,d。(1<=d<=a,b<=50000)

Output

  对于每组询问,输出到输出文件zap.out一个正整数,表示满足条件的整数对数。

Sample Input

2
4 5 2
6 4 3

Sample Output

3
2
//对于第一组询问,满足条件的整数对有(2,2),(2,4),(4,2)。对于第二组询问,满足条件的整数对有(6,3),(3,3)。



#include<bits/stdc++.h>
using namespace std;
#define N 500010
int T,a,b,d,tot=0;
bool mark[N]={0};
int pri[N],mu[N],F[N]={0};
void init(){
mu[1]=1;
for(int i=2;i<N;i++){
if(!mark[i])pri[++tot]=i,mu[i]=-1;
for(int j=1;j<=tot&&pri[j]*i<N;j++){
mark[i*pri[j]]=1;
if(i%pri[j]==0){
mu[i*pri[j]]=0;
break;
}else mu[i*pri[j]]=-mu[i];
}
}
for(int i=1;i<N;i++)F[i]=F[i-1]+mu[i];
}
int main(){
init();
scanf("%d",&T);
while(T--){
scanf("%d%d%d",&a,&b,&d);
a/=d;b/=d;
int ans=0,up=min(a,b);
for(int i=1,j;i<=up;i=j+1){
j=min(a/(a/i),b/(b/i));
ans+=(F[j]-F[i-1])*(a/i)*(b/i);
}
printf("%d\n",ans);
}
return 0;
}

BZOJ1101 POI2007 Zap 【莫比乌斯反演】的更多相关文章

  1. BZOJ1101: [POI2007]Zap(莫比乌斯反演)

    1101: [POI2007]Zap Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2951  Solved: 1293[Submit][Status ...

  2. Bzoj1101: [POI2007]Zap 莫比乌斯反演+整除分块

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1101 莫比乌斯反演 1101: [POI2007]Zap 设 \(f(i)\) 表示 \(( ...

  3. 1101: [POI2007]Zap(莫比乌斯反演)

    1101: [POI2007]Zap Time Limit: 10 Sec Memory Limit: 162 MB Description FGD正在破解一段密码,他需要回答很多类似的问题:对于给定 ...

  4. 【BZOJ1101】Zap [莫比乌斯反演]

    Zap Time Limit: 10 Sec  Memory Limit: 162 MB[Submit][Status][Discuss] Description 对于给定的整数a,b和d,有多少正整 ...

  5. BZOJ 1101: [POI2007]Zap( 莫比乌斯反演 )

    求 answer = ∑ [gcd(x, y) = d] (1 <= x <= a, 1 <= y <= b) . 令a' = a / d, b' = b / d, 化简一下得 ...

  6. 【题解】Zap(莫比乌斯反演)

    [题解]Zap(莫比乌斯反演) 裸题... 直接化吧 [P3455 POI2007]ZAP-Queries 所有除法默认向下取整 \[ \Sigma_{i=1}^x\Sigma_{j=1}^y[(i, ...

  7. [BZOJ1101][POI2007]Zap

    [BZOJ1101][POI2007]Zap 试题描述 FGD正在破解一段密码,他需要回答很多类似的问题:对于给定的整数a,b和d,有多少正整数对x,y,满足x<=a,y<=b,并且gcd ...

  8. 【莫比乌斯反演】BZOJ1101 [POI2007]zap

    Description 回答T组询问,有多少组gcd(x,y)=d,x<=a, y<=b.T, a, b<=4e5. Solution 显然对于gcd=d的,应该把a/d b/d,然 ...

  9. P3455 [POI2007]ZAP-Queries(莫比乌斯反演)

    题目 P3455 [POI2007]ZAP-Queries 解析 莫比乌斯反演. 给定\(n\),\(m\),\(d\),求\[\sum_{i=1}^{n}\sum_{j=1}^{m}[gcd(i,j ...

随机推荐

  1. 面试代码基础(一)从strstr说起

    对于写程序要注意:要能在面试官的提示下把代码写出来(把思想实现的能力)!还要注意边界检查!递归找到出口! 开场来个简单字符串匹配 int strstr(char* target,char* sourc ...

  2. 获取远程html

    /// <summary> /// 获取远程html /// </summary> /// <param name="url"></par ...

  3. CGI-FASTCGI-PHPFPM

    随意记录,摘自知乎 原文链接:https://segmentfault.com/q/1010000000256516 首先,CGI是干嘛的?CGI是为了保证web server传递过来的数据是标准格式 ...

  4. 为什么U盘在拔出之前需要“安全弹出”?

    前言 我们不知道从什么时候开始有一个观念:U盘一定要点击“安全弹出”才能拔.那么是不是在任何情况下都必须要这样呢? 介绍 U盘的传输策略有两种: 写入缓存:这种策略在windows中称为“更好的性能” ...

  5. 设计模式--组合模式C++实现

    组合模式C++实现 1定义 将对象组合成树形结构以表示“部分-整体”的层次结构,使得用户对单个对象和组合对象的使用具有一致性 2类图 角色分析 Component抽象构建角色 定义参加组合独享的共同方 ...

  6. hdu4009最小树形图

    多建一个根,连到每一个点,然后花费是建水井的钱 然后跑一边最小树形图即可,这题必定有解,因为可以从根开始到每一点,可以不用判无解的情况 #include<map> #include< ...

  7. Spring Boot配置ContextPath【从零开始学Spring Boot】

    Spring boot默认是/ ,这样直接通过http://ip:port/就可以访问到index页面,如果要修改为http://ip:port/path/ 访问的话,那么需要在Application ...

  8. day36 爬虫+http请求+高性能

    爬虫 参考博客:http://www.cnblogs.com/wupeiqi/articles/5354900.html http://www.cnblogs.com/wupeiqi/articles ...

  9. Jqeury ajax 调用C#的后台程序

    <%@ Page Language="C#" AutoEventWireup="true" CodeFile="JQueryTest.aspx. ...

  10. netcat 安装 及netcat 命名介绍

    netcat 安装 https://blog.csdn.net/transformer_wsz/article/details/77624087 http://www.cnblogs.com/php- ...