题目链接

\(RT\)。

FlashHu巨佬的博客

#include <cstdio>
#define R register int
#define I inline void
#define lc c[x][0]
#define rc c[x][1]
const int MAXN = 300010;
inline int read(){
int s = 0, w = 1;
char ch = getchar();
while(ch < '0' || ch > '9'){ if(ch == '-') w = -1; ch = getchar(); }
while(ch >= '0' && ch <= '9'){ s = s * 10 + ch - '0'; ch = getchar(); }
return s * w;
}
int f[MAXN], c[MAXN][2], v[MAXN], s[MAXN], st[MAXN], tag[MAXN];
inline int nroot(R x){
return c[f[x]][0] == x || c[f[x]][1] == x;
}
I pushup(R x){
s[x] = s[lc] ^ s[rc] ^ v[x];
}
I swap(R x){
lc ^= rc; rc = lc ^ rc; lc ^= rc; tag[x] ^= 1;
}
I pushdown(R x){
if(tag[x]){
swap(lc); swap(rc);
tag[x] = 0;
}
}
I rotate(R x){
R y = f[x], z = f[y], k = c[y][1] == x, w = c[x][!k];
if(nroot(y)) c[z][c[z][1] == y] = x;
c[x][!k] = y; c[y][k] = w; f[y] = x; f[x] = z;
if(w) f[w] = y;
pushup(y);
}
I splay(R x){
R y = x, z = 0;
st[++z] = y;
while(nroot(y)) st[++z] = y = f[y];
while(z) pushdown(st[z--]);
while(nroot(x)){
y = f[x]; z = f[y];
if(nroot(y)) (c[z][1] == y) ^ (c[y][1] == x) ? rotate(x) : rotate(y);
rotate(x);
}
pushup(x);
}
I access(R x){
for(R y = 0; x; x = f[y = x]){
splay(x); rc = y; pushup(x);
}
}
I makeroot(R x){
access(x); splay(x);
swap(x);
}
inline int findroot(R x){
makeroot(x); splay(x);
while(lc){ x = lc; pushdown(x); }
splay(x);
return x;
}
I split(R x, R y){
makeroot(x); access(y); splay(y);
}
I link(R x, R y){
makeroot(x);
if(findroot(y) != x) f[x] = y;
}
I cut(R x, R y){
split(x, y);
if(c[y][0] == x){
f[x] = c[y][0] = 0;
pushup(y);
}
}
int n, m, opt, a, b;
int main(){
n = read(); m = read();
for(R i = 1; i <= n; ++i)
v[i] = read();
while(m--){
opt = read(); a = read(); b = read();
switch(opt){
case 0 : split(a, b); printf("%d\n", s[b]); break;
case 1 : link(a, b); break;
case 2 : cut(a, b); break;
case 3 : splay(a); v[a] = b; break;
}
}
return 0;
}

【洛谷 P3690】 【模板】Link Cut Tree (动态树)的更多相关文章

  1. LCT总结——概念篇+洛谷P3690[模板]Link Cut Tree(动态树)(LCT,Splay)

    为了优化体验(其实是强迫症),蒟蒻把总结拆成了两篇,方便不同学习阶段的Dalao们切换. LCT总结--应用篇戳这里 概念.性质简述 首先介绍一下链剖分的概念(感谢laofu的讲课) 链剖分,是指一类 ...

  2. 洛谷.3690.[模板]Link Cut Tree(动态树)

    题目链接 LCT(良心总结) #include <cstdio> #include <cctype> #include <algorithm> #define gc ...

  3. 洛谷P3690 [模板] Link Cut Tree [LCT]

    题目传送门 Link Cut Tree 题目背景 动态树 题目描述 给定n个点以及每个点的权值,要你处理接下来的m个操作.操作有4种.操作从0到3编号.点从1到n编号. 0:后接两个整数(x,y),代 ...

  4. Link Cut Tree 动态树 小结

    动态树有些类似 树链剖分+并查集 的思想,是用splay维护的 lct的根是动态的,"轻重链"也是动态的,所以并没有真正的轻重链 动态树的操作核心是把你要把 修改/询问/... 等 ...

  5. 洛谷P3690 Link Cut Tree (动态树)

    干脆整个LCT模板吧. 缺个链上修改和子树操作,链上修改的话join(u,v)然后把v splay到树根再打个标记就好. 至于子树操作...以后有空的话再学(咕咕咕警告) #include<bi ...

  6. LCT(link cut tree) 动态树

    模板参考:https://blog.csdn.net/saramanda/article/details/55253627 综合各位大大博客后整理的模板: #include<iostream&g ...

  7. 洛谷P2633 Count on a tree(主席树上树)

    题目描述 给定一棵N个节点的树,每个点有一个权值,对于M个询问(u,v,k),你需要回答u xor lastans和v这两个节点间第K小的点权.其中lastans是上一个询问的答案,初始为0,即第一个 ...

  8. 模板Link Cut Tree (动态树)

    题目描述 给定N个点以及每个点的权值,要你处理接下来的M个操作.操作有4种.操作从0到3编号.点从1到N编号. 0:后接两个整数(x,y),代表询问从x到y的路径上的点的权值的xor和.保证x到y是联 ...

  9. 洛谷 P2633 Count on a tree 主席树

    在一棵树上,我们要求点 $(u,v)$ 之间路径的第$k$大数. 对于点 $i$  ,建立 $i$  到根节点的一棵前缀主席树. 简单容斥后不难得出结果为$sumv[u]+sumv[v]−sumv[l ...

  10. 洛谷P2633 Count on a tree 主席树

    传送门:主席树 解题报告: 传送门! umm这题我还麻油开始做 所以 先瞎扯一波我的想法,如果错了我就当反面教材解释这种典型错误,对了我就不管了QwQ 就直接dfs,在dfs的过程中建树 然后就直接查 ...

随机推荐

  1. 设计模式--Restful笔记(一)

    一.REST基础概念 首先REST是 Representational State Transfer 的缩写,如果一个架构符合REST原则,它就是RESTful架构. 在REST中的一切都被认为是一种 ...

  2. 【Linux】- 简明Vim练习攻略

    vim的学习曲线相当的大(参看各种文本编辑器的学习曲线),所以,如果你一开始看到的是一大堆VIM的命令分类,你一定会对这个编辑器失去兴趣的.下面的文章翻译自<Learn Vim Progress ...

  3. wx import require的理解

    服务器端的Node.js遵循CommonJS规范.核心思想是允许模块通过require 方法来同步加载所要依赖的其他模块,然后通过 exports或module.exports来导出需要暴露的接口. ...

  4. free word online

    free word online https://office.live.com/start/Word.aspx https://www.lifewire.com/free-online-word-p ...

  5. rxjs5.X系列 —— ErrorHandling/Condition/Mathematical系列 api 笔记

    欢迎指导与讨论 : ) 前言 本文是笔者翻译 RxJS 5.X 官网各类operation操作系列的的第四篇 —— ErrorHanding异常处理.Condition Operator情况操作.Ma ...

  6. HttpWebRequest 保存Cookies,模拟Session登录

    前面使用HttpWebRequest 对象可以抓取网页中一些资料,不过有些页面可以直接打开,而有些页面必登录之后才能打开,也就是在登录后保存登录信息在Session,这样就可以访问有权限的页面了.下面 ...

  7. Codeforces Round #447 (Div. 2) 题解

    A.很水的题目,3个for循环就可以了 #include <iostream> #include <cstdio> #include <cstring> using ...

  8. App简介及登录页面

    一. APP目录 app目录: -migrations 数据操作记录,是自动创建的.数据修改表结构 -__init__.py #在python3里面可有可无都行 -__init__.py -admin ...

  9. CF712E Memory and Casinos 期望概率

    题意:\(n\)个赌场,每个赌场有\(p_{i}\)的胜率,如果赢了就走到下一个赌场,输了就退回上一个赌场,规定\(1\)号赌场的上一个是\(0\)号赌场,\(n\)号赌场的下一个是\(n + 1\) ...

  10. sql语句查询各门课程平均分的最大值

    解法一: select courseno,stuno,avg(score) '平均分最高值'--这里是求平均,后面的条件是过滤最大值的 from tablename group by courseno ...