题目链接

\(RT\)。

FlashHu巨佬的博客

#include <cstdio>
#define R register int
#define I inline void
#define lc c[x][0]
#define rc c[x][1]
const int MAXN = 300010;
inline int read(){
int s = 0, w = 1;
char ch = getchar();
while(ch < '0' || ch > '9'){ if(ch == '-') w = -1; ch = getchar(); }
while(ch >= '0' && ch <= '9'){ s = s * 10 + ch - '0'; ch = getchar(); }
return s * w;
}
int f[MAXN], c[MAXN][2], v[MAXN], s[MAXN], st[MAXN], tag[MAXN];
inline int nroot(R x){
return c[f[x]][0] == x || c[f[x]][1] == x;
}
I pushup(R x){
s[x] = s[lc] ^ s[rc] ^ v[x];
}
I swap(R x){
lc ^= rc; rc = lc ^ rc; lc ^= rc; tag[x] ^= 1;
}
I pushdown(R x){
if(tag[x]){
swap(lc); swap(rc);
tag[x] = 0;
}
}
I rotate(R x){
R y = f[x], z = f[y], k = c[y][1] == x, w = c[x][!k];
if(nroot(y)) c[z][c[z][1] == y] = x;
c[x][!k] = y; c[y][k] = w; f[y] = x; f[x] = z;
if(w) f[w] = y;
pushup(y);
}
I splay(R x){
R y = x, z = 0;
st[++z] = y;
while(nroot(y)) st[++z] = y = f[y];
while(z) pushdown(st[z--]);
while(nroot(x)){
y = f[x]; z = f[y];
if(nroot(y)) (c[z][1] == y) ^ (c[y][1] == x) ? rotate(x) : rotate(y);
rotate(x);
}
pushup(x);
}
I access(R x){
for(R y = 0; x; x = f[y = x]){
splay(x); rc = y; pushup(x);
}
}
I makeroot(R x){
access(x); splay(x);
swap(x);
}
inline int findroot(R x){
makeroot(x); splay(x);
while(lc){ x = lc; pushdown(x); }
splay(x);
return x;
}
I split(R x, R y){
makeroot(x); access(y); splay(y);
}
I link(R x, R y){
makeroot(x);
if(findroot(y) != x) f[x] = y;
}
I cut(R x, R y){
split(x, y);
if(c[y][0] == x){
f[x] = c[y][0] = 0;
pushup(y);
}
}
int n, m, opt, a, b;
int main(){
n = read(); m = read();
for(R i = 1; i <= n; ++i)
v[i] = read();
while(m--){
opt = read(); a = read(); b = read();
switch(opt){
case 0 : split(a, b); printf("%d\n", s[b]); break;
case 1 : link(a, b); break;
case 2 : cut(a, b); break;
case 3 : splay(a); v[a] = b; break;
}
}
return 0;
}

【洛谷 P3690】 【模板】Link Cut Tree (动态树)的更多相关文章

  1. LCT总结——概念篇+洛谷P3690[模板]Link Cut Tree(动态树)(LCT,Splay)

    为了优化体验(其实是强迫症),蒟蒻把总结拆成了两篇,方便不同学习阶段的Dalao们切换. LCT总结--应用篇戳这里 概念.性质简述 首先介绍一下链剖分的概念(感谢laofu的讲课) 链剖分,是指一类 ...

  2. 洛谷.3690.[模板]Link Cut Tree(动态树)

    题目链接 LCT(良心总结) #include <cstdio> #include <cctype> #include <algorithm> #define gc ...

  3. 洛谷P3690 [模板] Link Cut Tree [LCT]

    题目传送门 Link Cut Tree 题目背景 动态树 题目描述 给定n个点以及每个点的权值,要你处理接下来的m个操作.操作有4种.操作从0到3编号.点从1到n编号. 0:后接两个整数(x,y),代 ...

  4. Link Cut Tree 动态树 小结

    动态树有些类似 树链剖分+并查集 的思想,是用splay维护的 lct的根是动态的,"轻重链"也是动态的,所以并没有真正的轻重链 动态树的操作核心是把你要把 修改/询问/... 等 ...

  5. 洛谷P3690 Link Cut Tree (动态树)

    干脆整个LCT模板吧. 缺个链上修改和子树操作,链上修改的话join(u,v)然后把v splay到树根再打个标记就好. 至于子树操作...以后有空的话再学(咕咕咕警告) #include<bi ...

  6. LCT(link cut tree) 动态树

    模板参考:https://blog.csdn.net/saramanda/article/details/55253627 综合各位大大博客后整理的模板: #include<iostream&g ...

  7. 洛谷P2633 Count on a tree(主席树上树)

    题目描述 给定一棵N个节点的树,每个点有一个权值,对于M个询问(u,v,k),你需要回答u xor lastans和v这两个节点间第K小的点权.其中lastans是上一个询问的答案,初始为0,即第一个 ...

  8. 模板Link Cut Tree (动态树)

    题目描述 给定N个点以及每个点的权值,要你处理接下来的M个操作.操作有4种.操作从0到3编号.点从1到N编号. 0:后接两个整数(x,y),代表询问从x到y的路径上的点的权值的xor和.保证x到y是联 ...

  9. 洛谷 P2633 Count on a tree 主席树

    在一棵树上,我们要求点 $(u,v)$ 之间路径的第$k$大数. 对于点 $i$  ,建立 $i$  到根节点的一棵前缀主席树. 简单容斥后不难得出结果为$sumv[u]+sumv[v]−sumv[l ...

  10. 洛谷P2633 Count on a tree 主席树

    传送门:主席树 解题报告: 传送门! umm这题我还麻油开始做 所以 先瞎扯一波我的想法,如果错了我就当反面教材解释这种典型错误,对了我就不管了QwQ 就直接dfs,在dfs的过程中建树 然后就直接查 ...

随机推荐

  1. 如何改变placeholder的颜色

    :-moz-placeholder { /* Mozilla Firefox 4 to 18 */ color: #f00; } ::-moz-placeholder { /* Mozilla Fir ...

  2. 【BioCode】删除未算出PSSM与SS的蛋白质序列

    代码说明: 由于一些原因(氨基酸序列过长),没有算出PSSM与SS,按照整理出来的未算出特征的文件,删除原来的蛋白质序列: 需删除的氨基酸文件732.txt(共732条氨基酸): 删除前 氨基酸共25 ...

  3. 从装饰者模式的理解说JAVA的IO包

    1. 装饰者模式的详解 装饰者模式动态地将责任附加到对象上.若要扩展功能,装饰者提供了比继承更有弹性 的替代方案. 装饰者模式设计类之间的关系: 其 中Component是一个超类,ConcreteC ...

  4. utuntu下安装pip&pip3

    在utuntu下建议不要使用apt-get install 安装pip,会出现很多问题. 建议使用如下方式安装: wget https://bootstrap.pypa.io/get-pip.py - ...

  5. 只要实现了annotation这个接口就是注解 同理:只要实现了某个接口就是该类型的实现类

    只要实现了annotation这个接口就是注解  同理:只要实现了某个接口就是该类型的实现类

  6. MySQL复制 -- Binlog (1)

    复制之所以工作得益于MySQL把对数据库的变更都记录在 binlog中,然后主库把它读出来,放到从库上去应用.当然binlog 的用途不仅限于此,比如 PITR等 在5.1.4版本以前,binlog格 ...

  7. BZOJ5071 小A的数字

    设f[i]为选择i对i-1和i+1所带来的贡献.则有f[i-1]+f[i+1]+a[i]-2f[i]=b[i],特殊地,f[2]+a[1]=b[1],f[n-1]+a[n]-2f[n]=b[n].可以 ...

  8. Luogu4926 倍杀测量者(二分答案+差分约束)

    容易想到二分答案.问题变为判断是否所有条件都被满足,可以发现这是很多变量间的相对关系,取个log之后就是经典的差分约束模型了.特殊的地方在于某些人的分数已被给定,从每个人开始跑一遍最短路判断一下是否能 ...

  9. BZOJ3875 AHOI2014/JSOI2014骑士游戏(动态规划)

    容易想到设f[i]为杀死i号怪物所消耗的最小体力值,由后继节点更新.然而这显然是有后效性的,正常的dp没法做. 虽然spfa已经死了,但确实还是挺有意思的.只需要用spfa来更新dp值就可以了.dij ...

  10. P2812 校园网络【[USACO]Network of Schools加强版】

    题目背景 浙江省的几所OI强校的神犇发明了一种人工智能,可以AC任何题目,所以他们决定建立一个网络来共享这个软件.但是由于他们脑力劳动过多导致全身无力身体被♂掏♂空,他们来找你帮助他们. 题目描述 共 ...