题目链接

Problem Description

You are given a permutation a from 0 to n−1 and a permutation b from 0 to m−1.

Define that the domain of function f is the set of integers from 0 to n−1, and the range of it is the set of integers from 0 to m−1.

Please calculate the quantity of different functions f satisfying that f(i)=bf(ai) for each i from 0 to n−1.

Two functions are different if and only if there exists at least one integer from 0 to n−1 mapped into different integers in these two functions.

The answer may be too large, so please output it in modulo 109+7.

Input

The input contains multiple test cases.

For each case:

The first line contains two numbers n, m. (1≤n≤100000,1≤m≤100000)

The second line contains n numbers, ranged from 0 to n−1, the i-th number of which represents ai−1.

The third line contains m numbers, ranged from 0 to m−1, the i-th number of which represents bi−1.

It is guaranteed that ∑n≤106, ∑m≤106.

Output

For each test case, output "Case #x: y" in one line (without quotes), where x indicates the case number starting from 1 and y denotes the answer of corresponding case.

Sample Input

3 2

1 0 2

0 1

3 4

2 0 1

0 2 3 1

Sample Output

Case #1: 4

Case #2: 4

题意:

有两个,数组a是[0n-1]的排列,数组b是[0m-1]的排列。现在定义f(i)=b[f(a[i])];

  • 问f(i)有多少种取值,使得表达式f(i)=b[f(a[i])]全部合法。

分析:

以第一个样例 a={1,0,2} b={0,1}为例:

那么f(0)=b[f(1)] f(1)=b[f(0)] f(2)=b[f(2)]

这里有两个环分别为 f(0)->f(1) 和f(2)

所以我们的任务就是在b中找环,该环的长度必须为a中环的长度的约数。

为什么必须的是约数呢?

因为如果b的环的长度是a的环的长度的约数的话,那也就意味着用b这个环也能构成a这个环,只不过是多循环了几次而已。

然后找到a中所有环的方案数,累乘便是答案。

为什么要累乘呢?我最开始一直以为要累加。

这个就用到了排列组合的思想,因为肯定要f(i)肯定要满足所有的数,而a中的每个环都相当于从a中取出几个数的方案数,所以总共的方案数应该累乘。

#include<iostream>
#include<stdio.h>
#include<vector>
#include<string.h>
using namespace std;
const int max_n=100010;
const int mod=1e9+7;
int n,m;
int a[max_n],b[max_n],len_b[max_n];
bool vis[max_n];
vector <int>A,fac[max_n]; ///构建环,并返回环的大小
int dfs(int N,int *c)
{
if(vis[N])
return 0;
vis[N]=1;
return dfs(c[N],c)+1;
} void get_fac()
{
for(int i=1; i<=100000; i++)///fac[j]里面保存的是长度为j的环的因子
{
for(int j=i; j<=100000; j+=i)
fac[j].push_back(i);
}
} int main()
{
int Case=0;
get_fac();
while(~scanf("%d%d",&n,&m))
{
for(int i=0; i<n; i++)
scanf("%d",&a[i]);
for(int i=0; i<m; i++)
scanf("%d",&b[i]);
A.clear();
memset(vis,0,sizeof(vis));
for(int i=0; i<n; i++)
{
if(vis[i]) continue;
A.push_back(dfs(i,a));///a数组中环的长度,重复的长度也是保存的
}
memset(vis,0,sizeof(vis));
memset(len_b,0,sizeof(len_b));
for(int i=0; i<m; i++)
{
if(vis[i]) continue;
len_b[dfs(i,b)]++;///b数组中长度为dfs(i,b)的环的个数
}
long long int ans=1;
for(int i=0,L=A.size(); i<L; i++)
{
int la=A[i];///取出a中的一个长度为la的环
long long res=0;
for(int j=0,ll=fac[la].size(); j<ll; j++)
{
int lb=fac[la][j];///lb是长度为la的环的一个因子
res=(res+(long long )lb*len_b[lb])%mod;///因子个数乘以环的个数就是一功德方案数
}
ans=ans*res%mod;
}
printf("Case #%d: %lld\n",++Case,ans); }
}

2017ACM暑期多校联合训练 - Team 1 1006 HDU 6038 Function (排列组合)的更多相关文章

  1. 2017ACM暑期多校联合训练 - Team 8 1006 HDU 6138 Fleet of the Eternal Throne (字符串处理 AC自动机)

    题目链接 Problem Description The Eternal Fleet was built many centuries ago before the time of Valkorion ...

  2. 2017ACM暑期多校联合训练 - Team 5 1006 HDU 5205 Rikka with Graph (找规律)

    题目链接 Problem Description As we know, Rikka is poor at math. Yuta is worrying about this situation, s ...

  3. 2017ACM暑期多校联合训练 - Team 2 1006 HDU 6050 Funny Function (找规律 矩阵快速幂)

    题目链接 Problem Description Function Fx,ysatisfies: For given integers N and M,calculate Fm,1 modulo 1e ...

  4. 2017ACM暑期多校联合训练 - Team 4 1004 HDU 6070 Dirt Ratio (线段树)

    题目链接 Problem Description In ACM/ICPC contest, the ''Dirt Ratio'' of a team is calculated in the foll ...

  5. 2017ACM暑期多校联合训练 - Team 9 1005 HDU 6165 FFF at Valentine (dfs)

    题目链接 Problem Description At Valentine's eve, Shylock and Lucar were enjoying their time as any other ...

  6. 2017ACM暑期多校联合训练 - Team 9 1010 HDU 6170 Two strings (dp)

    题目链接 Problem Description Giving two strings and you should judge if they are matched. The first stri ...

  7. 2017ACM暑期多校联合训练 - Team 8 1002 HDU 6134 Battlestation Operational (数论 莫比乌斯反演)

    题目链接 Problem Description The Death Star, known officially as the DS-1 Orbital Battle Station, also k ...

  8. 2017ACM暑期多校联合训练 - Team 8 1011 HDU 6143 Killer Names (容斥+排列组合,dp+整数快速幂)

    题目链接 Problem Description Galen Marek, codenamed Starkiller, was a male Human apprentice of the Sith ...

  9. 2017ACM暑期多校联合训练 - Team 8 1008 HDU 6140 Hybrid Crystals (模拟)

    题目链接 Problem Description Kyber crystals, also called the living crystal or simply the kyber, and kno ...

随机推荐

  1. PAT 甲级 1046 Shortest Distance

    https://pintia.cn/problem-sets/994805342720868352/problems/994805435700199424 The task is really sim ...

  2. 组件式开发框架 craftyjs

    想要少写代码,请用组件式开发吧.传统的oop,一直做着重复的事性. 先理解下概念 Entity            实体        An entity is just an ID Compone ...

  3. 【数据库】SQL分组多列统计(GROUP BY后按条件分列统计)

    select whbmbh ,zt,1 as tjsl from fyxx group by zt,whbmbh select whbmbh,sum(case zt when '有效' then 1 ...

  4. 高斯消元模板(pascal)

    洛谷P3389评测 program rrr(input,output); const eps=1e-8; var a:..,..]of double; n,i,j,k:longint; t:doubl ...

  5. python常用模块collections os random sys

    Python 模块(Module),是一个 Python 文件,以 .py 结尾,包含了 Python 对象定义和Python语句. 模块让你能够有逻辑地组织你的 Python 代码段. 把相关的代码 ...

  6. String Problem HDU - 3374(最大最小表示法+循环节)

    题意: 给出一个字符串,问这个字符串经过移动后的字典序最小的字符串的首字符位置和字典序最大的字符串的首字符的位置,和能出现多少次最小字典序的字符串和最大字典序的字符串 解析: 能出现多少次就是求整个字 ...

  7. 关于qt中的tr()函数

    关于qt中的tr()函数 在论坛中漂,经常遇到有人遇到tr相关的问题.用tr的有两类人: (1)因为发现中文老出问题,然后搜索,发现很多人用tr,于是他也开始用tr (2)另一类人,确实是出于国际化的 ...

  8. 【模考】2018.04.08 Connection

    Description 给定一张N个点M条边的连通无向图,问最少需要断开多少条边使得这张图不再连通. Input 第一行两个整数N,M含义如题所示. 接下来M行,每行两个正整数x,y,表示x和y之间有 ...

  9. 【MediaElement】WPF视频播放器【2】

    一.前言       上回说到需要做放视频的使用向导,这两天公司里的老司机一直帮我答疑解惑,让这个任务变得挺顺的,真心感谢他们! 这次与[1]中的不同之处在于: (1)播放和暂停按钮集成在<Me ...

  10. tmp_table_size ---> 优化 MYSQL 经验总结

    数据库连接突然增多到1000的问题 查看了一下,未有LOCK操作语句. 但是明显有好多copy to tmp table的SQL语句,这条语读的时间比较长,且这个表会被加读锁,相关表的update语句 ...