题目描述

for i=1 to n

for j=1 to n

 sum+=gcd(i,j)

给出n求sum. gcd(x,y)表示x,y的最大公约数.

输入输出格式

输入格式:

n

输出格式:

sum

输入输出样例

输入样例#1:

2
输出样例#1:

5

说明

数据范围 30% n<=3000 60% 7000<=n<=7100 100% n<=100000

分析:求sum我们不可能把所有gcd全部求出来,但是有很多一样的gcd,因此我们可以统计每个gcd的个数,如gcd=k的倍数的个数为(n/k)*(n/k),这样我们把k的倍数减掉就好了,因此我们要倒着枚举k.

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm> using namespace std; long long n,sum,d[]; int main()
{
scanf("%lld", &n);
for (int k = n; k; k--)
{
d[k] = (n / k) * (n / k);
for (int i = k + k; i <= n; i += k)
d[k] -= d[i];
sum += d[k] * k;
}
printf("%lld\n", sum); return ;
}

洛谷P2398 GCD SUM的更多相关文章

  1. 洛谷P2398 GCD SUM (数学)

    洛谷P2398 GCD SUM 题目描述 for i=1 to n for j=1 to n sum+=gcd(i,j) 给出n求sum. gcd(x,y)表示x,y的最大公约数. 输入输出格式 输入 ...

  2. 洛谷P2398 GCD SUM [数论,欧拉筛]

    题目传送门 GCD SUM 题目描述 for i=1 to n for j=1 to n sum+=gcd(i,j) 给出n求sum. gcd(x,y)表示x,y的最大公约数. 输入输出格式 输入格式 ...

  3. 洛谷 P2398 GCD SUM || uva11417,uva11426,uva11424,洛谷P1390,洛谷P2257,洛谷P2568

    https://www.luogu.org/problemnew/show/P2398 $原式=\sum_{k=1}^n(k\sum_{i=1}^n\sum_{j=1}^n[(i,j)=k])$ 方法 ...

  4. 洛谷 P2398 GCD SUM 题解

    题面 挺有意思的. 设f[i]表示gcd(i,j)=i的个数,g[i]表示k|gcd(i,j)的个数; g[i]=(n/i)*(n/i); g[i]=f[i]+f[2i]+f[3i]+...; 所以f ...

  5. P2398 GCD SUM

    P2398 GCD SUM一开始是憨打表,后来发现打多了,超过代码长度了.缩小之后是30分,和暴力一样.正解是,用f[k]表示gcd为k的一共有多少对.ans=sigma k(1->n) k*f ...

  6. 洛谷P2568 GCD(线性筛法)

    题目链接:传送门 题目: 题目描述 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. 输入输出格式 输入格式: 一个整数N 输出格式: 答案 输入输出样例 ...

  7. 洛谷 P1890 gcd区间

    P1890 gcd区间 题目提供者 洛谷OnlineJudge 标签 数论(数学相关) 难度 普及/提高- 题目描述 给定一行n个正整数a[1]..a[n]. m次询问,每次询问给定一个区间[L,R] ...

  8. 洛谷P2568 GCD (欧拉函数/莫比乌斯反演)

    P2568 GCD 题目描述 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. 输入输出格式 输入格式: 一个整数N 输出格式: 答案 输入输出样例 输入 ...

  9. 【洛谷P2398】GCD SUM

    题目大意:求 \[\sum\limits_{i=1}^n\sum\limits_{j=1}^ngcd(i,j)\] 题解: 最重要的一步变换在于. \[\sum\limits_{k=1}^n k \s ...

随机推荐

  1. “错误: 编码GBK的不可映射字符” 的解决方案

    命令行下,用javac命令编译java程序时,如果文档的编码为“utf-8”,并且含有中文字符时,会出现乱码现象,编译通过不了.如图: 解决方案:编译时指定编码方式,防止乱码.如下:

  2. python程序设计——面向对象程序设计:方法

    类中定义的方法分为四类:公有方法,私有方法,静态方法,类方法 公有方法.私有方法都属于对象,私有方法的名字以"__"开始 每个对象都有自己的公有方法和私有方法,这两类方法可以访问属 ...

  3. Python爬虫:爬取美拍小姐姐视频

    最近在写一个应用,需要收集微博上一些热门的视频,像这些小视频一般都来自秒拍,微拍,美拍和新浪视频,而且没有下载的选项,所以只能动脑想想办法了. 第一步 分析网页源码. 例如:http://video. ...

  4. CsvHelper文档-3写

    CsvHelper文档-3写 不用做任何设置,默认的情况下,csvhelper就可以很好的工作了.如果你的类的属性名称和csv的header名称匹配,那么可以按照下面的例子写入: var record ...

  5. New begin

    Purpose 今天更换了id,希望重新沉淀. 晚上看到国外一个博客,落款有个中文: 敬惜字纸. 共勉.

  6. Thunder团队第七周 - Scrum会议5

    Scrum会议5 小组名称:Thunder 项目名称:i阅app Scrum Master:邹双黛 工作照片: 宋雨沉迷于照相无法自拔,所以不在相片中. 参会成员: 王航:http://www.cnb ...

  7. MySQL数据库错误号:2003 - Can't connect to MYSQL server on 'localhost'(10061)

    打开Windows+R在里面输入services.msc打开服务 在MySQL服务是右键点击启动,让其状态显为正在运行即可 启动完毕,然后再用命令CMD去连接,或者Navicat都不再报上面的错

  8. Spring Boot 学习资料【m了以后看】(转)

    推荐博客: 程序员DD SpringBoot集成 liaokailin的专栏 纯洁的微笑 SpringBoot揭秘与实战 catoop的专栏 方志朋Spring Boot 专栏 简书Spring Bo ...

  9. Android内存泄漏第二课--------(集合中对象没清理造成的内存泄漏 )

    一.我们通常把一些对象的引用加入到了集合容器(比如ArrayList)中,当我们不需要该对象时,并没有把它的引用从集合中清理掉,这样这个集合就会越来越大.如果这个集合是static的话,那情况就更严重 ...

  10. wpf下使用NotifyIcon

    以前在winForm下使用过NotifyIcon,到wpf找不到了,在wpf下还是直接用WinForm里的那个NotifyIcon实现最小到系统托盘 定义一个NotifyIcon成员 : Notify ...