题目描述

for i=1 to n

for j=1 to n

 sum+=gcd(i,j)

给出n求sum. gcd(x,y)表示x,y的最大公约数.

输入输出格式

输入格式:

n

输出格式:

sum

输入输出样例

输入样例#1:

2
输出样例#1:

5

说明

数据范围 30% n<=3000 60% 7000<=n<=7100 100% n<=100000

分析:求sum我们不可能把所有gcd全部求出来,但是有很多一样的gcd,因此我们可以统计每个gcd的个数,如gcd=k的倍数的个数为(n/k)*(n/k),这样我们把k的倍数减掉就好了,因此我们要倒着枚举k.

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm> using namespace std; long long n,sum,d[]; int main()
{
scanf("%lld", &n);
for (int k = n; k; k--)
{
d[k] = (n / k) * (n / k);
for (int i = k + k; i <= n; i += k)
d[k] -= d[i];
sum += d[k] * k;
}
printf("%lld\n", sum); return ;
}

洛谷P2398 GCD SUM的更多相关文章

  1. 洛谷P2398 GCD SUM (数学)

    洛谷P2398 GCD SUM 题目描述 for i=1 to n for j=1 to n sum+=gcd(i,j) 给出n求sum. gcd(x,y)表示x,y的最大公约数. 输入输出格式 输入 ...

  2. 洛谷P2398 GCD SUM [数论,欧拉筛]

    题目传送门 GCD SUM 题目描述 for i=1 to n for j=1 to n sum+=gcd(i,j) 给出n求sum. gcd(x,y)表示x,y的最大公约数. 输入输出格式 输入格式 ...

  3. 洛谷 P2398 GCD SUM || uva11417,uva11426,uva11424,洛谷P1390,洛谷P2257,洛谷P2568

    https://www.luogu.org/problemnew/show/P2398 $原式=\sum_{k=1}^n(k\sum_{i=1}^n\sum_{j=1}^n[(i,j)=k])$ 方法 ...

  4. 洛谷 P2398 GCD SUM 题解

    题面 挺有意思的. 设f[i]表示gcd(i,j)=i的个数,g[i]表示k|gcd(i,j)的个数; g[i]=(n/i)*(n/i); g[i]=f[i]+f[2i]+f[3i]+...; 所以f ...

  5. P2398 GCD SUM

    P2398 GCD SUM一开始是憨打表,后来发现打多了,超过代码长度了.缩小之后是30分,和暴力一样.正解是,用f[k]表示gcd为k的一共有多少对.ans=sigma k(1->n) k*f ...

  6. 洛谷P2568 GCD(线性筛法)

    题目链接:传送门 题目: 题目描述 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. 输入输出格式 输入格式: 一个整数N 输出格式: 答案 输入输出样例 ...

  7. 洛谷 P1890 gcd区间

    P1890 gcd区间 题目提供者 洛谷OnlineJudge 标签 数论(数学相关) 难度 普及/提高- 题目描述 给定一行n个正整数a[1]..a[n]. m次询问,每次询问给定一个区间[L,R] ...

  8. 洛谷P2568 GCD (欧拉函数/莫比乌斯反演)

    P2568 GCD 题目描述 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. 输入输出格式 输入格式: 一个整数N 输出格式: 答案 输入输出样例 输入 ...

  9. 【洛谷P2398】GCD SUM

    题目大意:求 \[\sum\limits_{i=1}^n\sum\limits_{j=1}^ngcd(i,j)\] 题解: 最重要的一步变换在于. \[\sum\limits_{k=1}^n k \s ...

随机推荐

  1. smartgit 过期

    进入到安装目录把Setting.xml 文件删除然后,再次打开就可以正常使用了.

  2. loadrunner--基础2

    LR11-03 一.并发测试(n VU) 1.并发测试两个条件 1)脚本中要有 集合点(并发点) 2)控制台中要设置并发策略(选择第一项,所有虚拟用户到达集合点后释放) 集合点: 5个线程,代表5个V ...

  3. Codeforces Round #765 Div.1 F. Souvenirs 线段树

    题目链接:http://codeforces.com/contest/765/problem/F 题意概述: 给出一个序列,若干组询问,问给出下标区间中两数作差的最小绝对值. 分析: 这个题揭示着数据 ...

  4. 第18次Scrum会议(10/30)【欢迎来怼】

    一.小组信息 队名:欢迎来怼小组成员队长:田继平成员:李圆圆,葛美义,王伟东,姜珊,邵朔,冉华 小组照片 二.开会信息 时间:2017/10/30 17:19~17:38,总计19min.地点:东北师 ...

  5. 软件工程-东北师大站-第六次作业PSP

    1.本周PSP 2.本周进度条 3.本周累计进度图 代码累计折线图 博文字数累计折线图 4.本周PSP饼状图

  6. AOP:jdk的动态代理

    1.文件结构 2.建立接口 package com.wangcf.manager; public interface IUserManager { public void add(); public ...

  7. dRMT: Disaggregated Programmable Switching

    dRMT: Disaggregated Programmable Switching 2017年SIGCOMM会议上提出的新型可编程交换机架构,对2013年提出的RMT架构存在的问题进行了优化. 主要 ...

  8. OA_1界面

    <%@ page language="java" contentType="text/html;charset=GB18030" pageEncoding ...

  9. sql高级主题资料(网络复制)

    SQL Server 常用高级语法笔记   自从用了EF后很少写sql和存储过程了,今天需要写个比较复杂的报告,翻出了之前的笔记做参考,感觉这个笔记还是很有用的,因此发出来和大家分享. 1.case. ...

  10. lintcode-411-格雷编码

    411-格雷编码 格雷编码是一个二进制数字系统,在该系统中,两个连续的数值仅有一个二进制的差异. 给定一个非负整数 n ,表示该代码中所有二进制的总数,请找出其格雷编码顺序.一个格雷编码顺序必须以 0 ...