hadoop集群中发现使用Parallel Scavenge+Parallel Old收集器组合进行垃圾收集(这也是server端jvm默认的GC方式)时CPU占用可能会非常高,偶尔会出现爆满的状态,考虑可能是由于当时程序在执行GC导致的,而且很可能是由于并行GC导致的,我们根据服务器启动的Java进程查看一下当前使用的是哪种GC方式:
 
$ jinfo -flag "GC方式" jvm进程id
 
最终可以看出使用的是-XX:+UseParallelOldGC,打开此开关参数后,使用Parallel Scavenge+Parallel Old收集器组合进行垃圾收集。
 
串行垃圾回收器在jvm Client模式下是默认启动的,参数 -XX:+UseSerialGC 可以设置垃圾回收策略为串行。
 
模拟线上同样的两个MR任务,比较其执行CPU时间和GC时间:
 
-XX:+UseParallelOldGC

 
-XX:+UseSerialGC
 
经过分析之后,可以发现GC花费的时间有一定的增长,由453s提高了大概3倍左右,到达1321s;而CPU时间则有大幅度下降,说明的确降低了CPU的时间。
 
为了确保实验结果的正确性,再进行第二次的测试:
 
-XX:+UseParallelOldGC

 
-XX:+UseSerialGC

 
通过对比仍然可以看出,CPU时间减少200s左右,GC时间增加大概260s。通过简单分析可以看出,对于hadoop的每个任务的JVM,更像是client应用程序而非server端的应用,因为每个Task分配的资源CPU: 1 core, 2G memory是相对固定的。

Counter的计算逻辑

 
那么这两个Counter(CPU时间的计算以及GC时间的计算)是如何得出来的?
 
这两个Counter都在hadoop-mapreduce-client包下面的hadoop-mapreduce-client-core模块下,其中的resources包含了所有需要的资源,每个分组都是以不同的.properties文件命名的。CPU和GC消耗时间都在TaskCounter.properties文件中,可以看出这个文件的Counter都属于分组Map-Reduce Framework,在工程中它们存在于具体的枚举中:org.apache.hadoop.mapreduce.TaskCounter,
GC_TIME_MILLIS,
CPU_MILLISECONDS
 
hadoop如何衡量mapreduce任务的计算量,肯定不能按照任务的运行时间来计算,这是由于Map和Reduce的不均匀性,任务可能卡在单个Map或者Reduce端(由于分片和Partition的不均匀性导致)。
 

CPU,内存等资源的计算

 
可以确定,hadoop使用的是CPU时间,CPU_MILLISECONDS就是任务运行耗费的CPU时间。原来在hadoop运行期间,task会从/proc/<pid>/stat读取对应进程的用户CPU时间和内核CPU时间,其总和就是最后的CPU时间。
 
关于proc文件的具体信息说明,可以查看这篇blog:
 
我们关联到具体的源码位置,可以查看下面这个方法:
org.apache.hadoop.mapred.Task void updateResourceCounters()
方法说明:Update resource information counters
其中使用了org.apache.hadoop.yarn.util.ResourceCalculatorProcessTree来获得进程使用的相关资源,其中包括了CPU资源,物理内存以及虚拟内存资源等等。在hadoop2.2.0版本中包括了两种子类型,分别是基于Windows和Linux监测进程资源的,这里只分析基于Linux计算资源的子类:
org.apache.hadoop.yarn.util.ProcfsBasedProcessTree
由于CPU时间都是以jiffies为单位的,因此ProcessTree中首先计算了jiffies:
  • 执行Shell命令:  getconf CLK_TCK,返回jiffiPerseconds=100
  • jiffies的计算公式为:JIFFY_LENGTH_IN_MILLIS = jiffiesPerSecond != -1 ? Math.round(1000D / jiffiesPerSecond) : -1;
而内存占用则摘自上述blog中:
"Map-Reduce Framework:Physical memory (bytes) snapshot" 每个task会从/proc/<pid>/stat读取对应进程的内存快照,这个是进程的当前物理内存使用大小。

"Map-Reduce Framework:Virtual memory (bytes) snapshot" 每个task会从/proc/<pid>/stat读取对应进程的虚拟内存快照,这个是进程的当前虚拟内存使用大小。

"Map-Reduce Framework:Total committed heap usage (bytes)" 每个task的jvm调用Runtime.getRuntime().totalMemory()获取jvm的当前堆大小。
物理内存和虚拟内存是从/proc/pid/stat中拿到的,Total committed heap usage (bytes)是直接调用JDK中的方法Runtime.getRuntime().totalMemory()方法拿到,这个值是这个JVM能拿到的最大内存。
 

GC时间的计算

 
GC时间是肯定不能从系统中得出,这只能寄希望于Java虚拟机。Hadoop中是使用JMX来拿到GC的总时间的,这部分代码可以参考类org.apache.hadoop.mapred.Task类中子类GCTimeUpdater中的构造器以及getElapseGC()方法:
 
public GcTimeUpdater() {
this.gcBeans = ManagementFactory.getGarbageCollectorMXBeans();
getElapsedGc(); // Initialize 'lastGcMillis' with the current time spent.
} /**
* @return the number of milliseconds that the gc has used for CPU
* since the last time this method was called.
*/
protected long getElapsedGc() {
long thisGcMillis = 0;
for (GarbageCollectorMXBean gcBean : gcBeans) {
thisGcMillis += gcBean.getCollectionTime();
} long delta = thisGcMillis - lastGcMillis;
this.lastGcMillis = thisGcMillis;
return delta;
}
JMX,Java Management eXtension,即Java管理扩展,为管理和监测资源提供了一个通过架构,设计模式,API和服务,JMX可以管理和监测的资源包括应用程序、设备、服务和Java虚拟机。
JMX的应用包括但不仅限于以下几种:
  • 管理应用程序的配置;
  • 统计并展现应用程序的行为;
  • 当资源的状态发生变化时发出通知;
比如JDK自带的工具JConsole就是第二种应用的方式:


 
通过其中的GarbageCollectorMBean中的方法就可以监测到具体的收集次数以及收集时间。


 
上述的分析仅仅是关于单个TaskAttempt的counter,这些Counter也需要定时地向Application Master汇报(通过RPC方式以及org.apache.hadoop.mapred.TaskUmbilicalProtocol协议)。
 
任务的Counter刷新也是有一定的间隔的,默认时间间隔(貌似不能修改的):
/** The number of milliseconds between progress reports. */
public static final int PROGRESS_INTERVAL = 3000;
在任务执行过程中会进行不断地刷新操作,任务整体完成后,也会进行最后一次的状态提交,所以我们可以在任务完成后能够查看到所有map/reduce任务成功attemp的Counter指标数据。
 
 
 

hadoop从调整GC到关键Counter计算原理分析的更多相关文章

  1. 【原创 Hadoop&Spark 动手实践 7】Spark 计算引擎剖析与动手实践

    [原创 Hadoop&Spark 动手实践 7]Spark计算引擎剖析与动手实践 目标: 1. 理解Spark计算引擎的理论知识 2. 动手实践更深入的理解Spark计算引擎的细节 3. 通过 ...

  2. Hadoop数据管理介绍及原理分析

    Hadoop数据管理介绍及原理分析 最近2014大数据会议正如火如荼的进行着,Hadoop之父Doug Cutting也被邀参加,我有幸听了他的演讲并获得亲笔签名书一本,发现他竟然是左手写字,当然这个 ...

  3. Hadoop生态圈-Zookeeper的工作原理分析

    Hadoop生态圈-Zookeeper的工作原理分析 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任.   无论是是Kafka集群,还是producer和consumer都依赖于Zoo ...

  4. 在HDInsight中从Hadoop的兼容BLOB存储查询大数据的分析

    在HDInsight中从Hadoop的兼容BLOB存储查询大数据的分析 低成本的Blob存储是一个强大的.通用的Hadoop兼容Azure存储解决方式无缝集成HDInsight.通过Hadoop分布式 ...

  5. 前端移动端的rem适配计算原理

    rem是什么? rem(font size of the root element)是指相对于根元素的字体大小的单位.简单的说它就是一个相对单位.看到rem大家一定会想起em单位,em(font si ...

  6. mapreducer计算原理

    mapreducer计算原理

  7. R语言简单实现聚类分析计算与分析(基于系统聚类法)

    聚类分析计算与分析(基于系统聚类法) 下面以一个具体的例子来实现实证分析.2008年我国其中31个省.市和自治区的农村居民家庭平均每人全年消费性支出. 根据原始数据对我国省份进行归类统计. 原始数据如 ...

  8. OpenGL中摄像机矩阵的计算原理

    熟悉OpenGL|ES的朋友,可能会经常设置摄像机的view矩阵,iOS中相对较好,已经封装了方向,只需要设置摄像机位置,目标点位置以及UP向量即可.下面先介绍下摄像机view矩阵的计算原理.此处假设 ...

  9. Hadoop基础--统计商家id的标签数案例分析

    Hadoop基础--统计商家id的标签数案例分析 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.项目需求 将“temptags.txt”中的数据进行分析,统计出商家id的评论标 ...

随机推荐

  1. MoreEffectiveC++Item35 条款26: 限制某个class所能产生的对象个数

    一 允许零个或一个对象 我们知道每当即将产生一个对象,我们有一个constructor被调用,那么我们现在想组织某个对象的产生,最简单的方法就是将其构造函数声明成private(这样做同事防止了这个类 ...

  2. 2017-2018-2 20165202 实验四《Android程序设计》实验报告

    一.实验报告封面 二.实验内容 1.基于Android Studio开发简单的Android应用并部署测试; 2.了解Android.组件.布局管理器的使用: 3.掌握Android中事件处理机制. ...

  3. 转一个有意思的利用存储过程备份恢复PostgreSQL

    [转自 housonglin1213 的博客]http://blog.csdn.net/housonglin1213/article/details/51005540 1.自定义函数脚本备份 CREA ...

  4. jsp页面图片显示不出来

    jsp页面就是MyJsp.jsp <body> This is my JSP page. <br> <img src="img/top.jpg"> ...

  5. 细说并发4:Java 阻塞队列源码分析(上)

    上篇文章 趣谈并发3:线程池的使用与执行流程 中我们了解到,线程池中需要使用阻塞队列来保存待执行的任务.这篇文章我们来详细了解下 Java 中的阻塞队列究竟是什么. 读完你将了解: 什么是阻塞队列 七 ...

  6. iOS数组排序 请求后,数组元素的排序 时间戳,最热,点赞数等

    [ZOYSessionManager dataWithUrlString:GetVideoDataComment andParameter:@{@"id":userID,@&quo ...

  7. iOS开发:UITableView的优化技巧-异步绘制Cell

    最近在微博上看到一个很好的开源项目VVeboTableViewDemo,是关于如何优化UITableView的.加上正好最近也在优化项目中的类似朋友圈功能这块,思考了很多关于UITableView的优 ...

  8. IOS开发 arc与非Arc代码的区别

    是属于ios开发中的内存管理问题:在这我简要概述一下,详细讲的话内容挺多,而且是作为一个ios开发人员,或ios开发爱好者,这是必须了解的:Objective-c中提供了两种内存管理机制MRC(Man ...

  9. json XML 比较

    JSON: 这个为什么会变成“cc”而不是d.substring(dot+1);的值?    解决: var jsonsub = {}; jsonsub[cc] = e; arrnew.push(js ...

  10. 全面进军javascript!

    前两天经过新华书店,进去转了转,又买了两本书.这次买的是<javascript学习指南>和<HTML5经典实例>(都是图灵动物系列,我已经有三本了*^_^*),其实我是想去买& ...