Data lake - Wikipedia https://en.wikipedia.org/wiki/Data_lake

数据湖

Azure Data Lake Storage Gen2 预览版简介 | Microsoft Docs https://docs.microsoft.com/zh-cn/azure/storage/data-lake-storage/introduction

Azure Data Lake Storage Gen2 是适用于大数据分析的可高度缩放、具有成本效益的 Data Lake 解决方案。它将大规模执行和经济高效的特点融入到高性能文件系统的功能中,帮助加快见解产生的时间。Data Lake Storage Gen2 扩展了 Azure Blob 存储功能,并且针对分析工作负载进行了优化。存储数据后即可通过现有的 Blob 存储和兼容 HDFS 的文件系统接口访问这些数据,而无需更改程序或复制数据。Data Lake Storage Gen2 是最为全面的可用 Data Lake。

大数据高级分析

实时分析

Data lake

From Wikipedia, the free encyclopedia
 
 

Jump to navigationJump to search

data lake is a system or repository of data stored in its natural format,[1] usually object blobs or files. A data lake is usually a single store of all enterprise data including raw copies of source system data and transformed data used for tasks such as reportingvisualizationanalytics and machine learning. A data lake can include structured data from relational databases (rows and columns), semi-structured data (CSV, logs, XMLJSON), unstructured data (emails, documents, PDFs) and binary data (images, audio, video). [2]

data swamp is a deteriorated data lake that is either inaccessible to its intended users or is providing little value.[3][4]

Background

James Dixon, then chief technology officer at Pentaho, allegedly coined the term[5] to contrast it with data mart, which is a smaller repository of interesting attributes derived from raw data.[6] In promoting data lakes, he argued that data marts have several inherent problems, such as information siloingPricewaterhouseCoopers said that data lakes could "put an end to data silos.[7] In their study on data lakes they noted that enterprises were "starting to extract and place data for analytics into a single, Hadoop-based repository." HortonworksGoogleOracleMicrosoftZaloniTeradataCloudera, and Amazon now all have data lake offerings. [8]

Examples

One example of technology used to host a data lake is the distributed file system used in Apache Hadoop. Many companies also use cloud storage services such as Azure Data Lake and Amazon S3.[9] There is a gradual academic interest in the concept of data lakes, for instance, Personal DataLake[10] at Cardiff University to create a new type of data lake which aims at managing big data of individual users by providing a single point of collecting, organizing, and sharing personal data.[11] An earlier data lake (Hadoop 1.0) had limited capabilities with its batch oriented processing (MapReduce) and was the only processing paradigm associated with it. Interacting with the data lake meant you had to have expertise in Java with map reduce and higher level tools like Apache Pig and Apache Hive (which by themselves were batch oriented).

Criticism

In June 2015, David Needle characterized "so-called data lakes" as "one of the more controversial ways to manage big data".[12] PricewaterhouseCoopers were also careful to note in their research that not all data lake initiatives are successful. They quote Sean Martin, CTO of Cambridge Semantics,

We see customers creating big data graveyards, dumping everything into HDFS [Hadoop Distributed File System] and hoping to do something with it down the road. But then they just lose track of what’s there. 
The main challenge is not creating a data lake, but taking advantage of the opportunities it presents.[7]

They describe companies that build successful data lakes as gradually maturing their lake as they figure out which data and metadata are important to the organization. One other criticism about the data lake is that the concept is fuzzy and arbitrary. It refers to any tool or data management practice that does not fit into the traditional data warehouse architecture. The data lake has been referred to as a technology such as Hadoop. The data lake has been labeled as a raw data reservoir or a hub for ETL offload. The data lake has been defined as a central hub for self-service analytics. The concept of the data lake has been overloaded with meanings, which puts the usefulness of the term into question.[13]

 
 

data lake 新式数据仓库的更多相关文章

  1. 构建企业级数据湖?Azure Data Lake Storage Gen2不容错过(上)

    背景 相较传统的重量级OLAP数据仓库,“数据湖”以其数据体量大.综合成本低.支持非结构化数据.查询灵活多变等特点,受到越来越多企业的青睐,逐渐成为了现代数据平台的核心和架构范式. 数据湖的核心功能, ...

  2. 构建企业级数据湖?Azure Data Lake Storage Gen2实战体验(中)

    引言 相较传统的重量级OLAP数据仓库,“数据湖”以其数据体量大.综合成本低.支持非结构化数据.查询灵活多变等特点,受到越来越多企业的青睐,逐渐成为了现代数据平台的核心和架构范式. 因此数据湖相关服务 ...

  3. 构建企业级数据湖?Azure Data Lake Storage Gen2实战体验(下)

    相较传统的重量级OLAP数据仓库,“数据湖”以其数据体量大.综合成本低.支持非结构化数据.查询灵活多变等特点,受到越来越多企业的青睐,逐渐成为了现代数据平台的核心和架构范式. 作为微软Azure上最新 ...

  4. Azure Data Lake Storage Gen2实战体验

    相较传统的重量级OLAP数据仓库,“数据湖”以其数据体量大.综合成本低.支持非结构化数据.查询灵活多变等特点,受到越来越多企业的青睐,逐渐成为了现代数据平台的核心和架构范式. 作为微软Azure上最新 ...

  5. 场景4 Data Warehouse Management 数据仓库

    场景4 Data Warehouse Management 数据仓库 parallel 4 100% —> 必须获得指定的4个并行度,如果获得的进程个数小于设置的并行度个数,则操作失败 para ...

  6. Data Lake Analytics的Geospatial分析函数

    0. 简介 为满足部分客户在云上做Geometry数据的分析需求,阿里云Data Lake Analytics(以下简称:DLA)支持多种格式的地理空间数据处理函数,符合Open Geospatial ...

  7. Data Lake Analytics + OSS数据文件格式处理大全

    0. 前言 Data Lake Analytics是Serverless化的云上交互式查询分析服务.用户可以使用标准的SQL语句,对存储在OSS.TableStore上的数据无需移动,直接进行查询分析 ...

  8. Modern Data Lake with Minio : Part 2

    转自: https://blog.minio.io/modern-data-lake-with-minio-part-2-f24fb5f82424 In the first part of this ...

  9. Modern Data Lake with Minio : Part 1

    转自:https://blog.minio.io/modern-data-lake-with-minio-part-1-716a49499533 Modern data lakes are now b ...

随机推荐

  1. PL/SQL developer连接oracle出现“ORA-12154:TNS:could not resolve the connect identifier specified”问题的解决

    转载请注明出处:http://blog.csdn.net/dongdong9223/article/details/50728536 本文出自[我是干勾鱼的博客] 使用PL/SQL developer ...

  2. CentOS下的强大的绘图工具 pinta

    [root@ok ~]# yum search pinta Loaded plugins: fastestmirror, refresh-packagekit, security Loading mi ...

  3. ubutun:从共享文件夹拷贝文件尽量使用cp命令而不是CTRL+C/V

    为了方便,VBOX安装的Ubuntu,并在硬盘上创建了一个与Windows的共享文件夹sharefolder方便在两个系统之间传文件 但是经常发现的问题就是从sharefolder中拷贝文件到ubun ...

  4. Scanner.findInLine()与while的使用莫名其妙的导致NoSuchElementException: No line found

    public static boolean parseHTML(Scanner sc, List<String> errorInfo) { String[] tags = new Stri ...

  5. 基于HTML5/CSS3可折叠的3D立方体动画

    今天要给大家带来另外一款CSS3 3D立方体动画,尤其在DEMO2中可以看到,鼠标滑过立方体后,它将会被打开,从里面弹出另外一个小立方体,动画效果非常酷,非常逼真. 在线预览   源码下载 实现的代码 ...

  6. swift百度地图api

    swift使用百度地图api遇到的坑 之前在Android上用过百度地图,以为大概类似,也没仔细看文档,结果被自己坑了 注意事项,http://developer.baidu.com/map/inde ...

  7. 三篇很好的讲解keppalived的博客

    VRRP协议介绍 参考资料: RFC 3768 1. 前言 VRRP(Virtual Router Redundancy Protocol)协议是用于实现路由器冗余的协议,最新协议在RFC3768中定 ...

  8. Odoo ParseError:"decoder jpeg not available" while parsing....

    The reason causing this problem is the plugin PIL install error to solve this problem,try this: 1. c ...

  9. HDU1717--小数化分数2

    这道题是将输入的小数(有可能是无限循环小数)来化为分数.刚開始看到以为枚举(千万不要嘲笑我),可是感觉不正确. 所以百度了小数化为分数的方法,然后看到了各种方法,原来是这这样,在这我採用的是小数化为分 ...

  10. C++之异常处理

     C++ Code  12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849 ...