主要内容:

1. List转JavaRDD,打印JavaRDD

2. List转JavaRDD,JavaRDD转JavaPairRDD,打印JavaPairRDD

3. JavaRDD<String> 转 JavaRDD<Row>


1. 先将List转为JavaRDD,再通过collect()和foreach打印JavaRDD

/**
* @author Yu Wanlong
*/ import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext; public class ReadTextToRDD { public static void main(String[] args) {
// configure spark
SparkConf sparkConf = new SparkConf().setAppName("Read Text to RDD")
.setMaster("local[2]").set("spark.executor.memory","2g");
// start a spark context
JavaSparkContext jsc = new JavaSparkContext(sparkConf);
// build List<String>
List<String> list = Arrays.asList("a:1", "a:2", "b:1", "b:1", "c:1","d:1");
// List<String> to JavaRDD<String>
JavaRDD<String> javaRDD = jsc.parallelize(list); // 使用collect打印JavaRDD
for (String str : javaRDD.collect()) {
System.out.println(str);
}
// 使用foreach打印JavaRDD
javaRDD.foreach(new VoidFunction<String>() {
@Override
public void call(String s) throws Exception {
System.out.println(s);
}
});
}
} a:1
a:2
b:1
b:1
c:1
d:1

2.  List转JavaRDD,JavaRDD转JavaPairRDD,打印JavaPairRDD

/**
* @author Yu Wanlong
*/ import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext; public class ReadTextToRDD { public static void main(String[] args) {
// configure spark
SparkConf sparkConf = new SparkConf().setAppName("Read Text to RDD")
.setMaster("local[2]").set("spark.executor.memory","2g");
// start a spark context
JavaSparkContext jsc = new JavaSparkContext(sparkConf);
// build List<String>
List<String> list = Arrays.asList("a:1", "a:2", "b:1", "b:1", "c:1","d:1");
// List<String> to JavaRDD<String>
JavaRDD<String> javaRDD = jsc.parallelize(list);
// JavaRDD<String> to JavaPairRDD
JavaPairRDD<String, Integer> javaPairRDD = javaRDD.mapToPair(
new PairFunction<String, String, Integer>() {
@Override
public Tuple2<String, Integer> call(String s) throws Exception {
String[] ss = s.split(":");
return new Tuple2<String, Integer>(ss[0], Integer.parseInt(ss[1]));
}
});
// 使用collect对JavaPairRDD打印
for (Tuple2<String, Integer> str : javaPairRDD.collect()) {
System.out.println(str.toString());
}
}
} (a,1)
(a,2)
(b,1)
(b,1)
(c,1)
(d,1)

 在JavaRDD<String>转为JavaPairRDD<String,Integer>的过程中,关键点为:

第一:mapToPair函数中的PairFunction<String, String, Integer>():PairFunction<JavaRDD输入的类型, 返回的JavaPairRDD的key类型, 返回的JavaPairRDD的value类型>()

第二:由于JavaPairRDD的存储形式本是key-value形式,Tuple2<String, Integer> 为需要返回的键值对类型,Tuple2<Key的类型, value类型>

第三:String s,String类型为JavaRDD<String>中的String,s代表其值

第四:return new Tuple2<String, Integer>(ss[0], Integer.parseInt(ss[1])),此处为返回的key-value的返回结果

小结:JavaRDD在转换成JavaPairRDD的时候,实际上是对单行的数据整合成key-value形式的过程,由JavaPairRDD在进行key-value运算时效率能大大提升

3.  JavaRDD<String> 转 JavaRDD<Row>

/**
* @author Yu Wanlong
*/ import org.apache.spark.sql.Row;
import org.apache.spark.SparkConf;
import org.apache.spark.sql.RowFactory;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext; public class ReadTextToRDD { public static void main(String[] args) {
// configure spark
SparkConf sparkConf = new SparkConf().setAppName("Read Text to RDD")
.setMaster("local[2]").set("spark.executor.memory","2g");
// start a spark context
JavaSparkContext jsc = new JavaSparkContext(sparkConf);
// build List<String>
List<String> list = Arrays.asList("a:1", "a:2", "b:1", "b:1", "c:1","d:1");
// List<String> to JavaRDD<String>
JavaRDD<String> javaRDD = jsc.parallelize(list); // JavaRDD<String> to JavaRDD<Row>
JavaRDD<Row> javaRDDRow = javaRDD.map(new Function<String, Row>() {
@Override
public Row call(String s) throws Exception {
String[] ss = s.split(":");
return RowFactory.create(ss[0], ss[1]);
}
}); // 打印JavaRDD<Row>
for (Row str : javaRDDRow.collect()) {
System.out.println(str.toString());
}
}
} [a,1]
[a,2]
[b,1]
[b,1]
[c,1]
[d,1]

Spark JavaRDD、JavaPairRDD、Dataset相互转换与打印的更多相关文章

  1. Spark JavaRDD、JavaPairRDD、Dataset之间的相互转换

    主要内容: 1. JavaRDD to JavaPairRDD 2. Dataset to JavaPairRDD 3. JavaPairRDD to JavaRDD 4. JavaRDD to Da ...

  2. XML与DataSet相互转换,DataSet查询

    以FileShare.Read形式读XML文件: string hotspotXmlStr = string.Empty; try { Stream fileStream = new FileStre ...

  3. Python 实现列表与二叉树相互转换并打印二叉树封装类-详细注释+完美对齐

    # Python 实现列表与二叉树相互转换并打印二叉树封装类-详细注释+完美对齐 from binarytree import build import random # https://www.cn ...

  4. Python 实现列表与二叉树相互转换并打印二叉树16-详细注释+完美对齐-OK

    # Python 实现列表与二叉树相互转换并打印二叉树16-详细注释+完美对齐-OK from binarytree import build import random # https://www. ...

  5. spark rdd df dataset

    RDD.DataFrame.DataSet的区别和联系 共性: 1)都是spark中得弹性分布式数据集,轻量级 2)都是惰性机制,延迟计算 3)根据内存情况,自动缓存,加快计算速度 4)都有parti ...

  6. C#中Json和List/DataSet相互转换

    #region List<T> 转 Json        /// <summary>        /// List<T> 转 Json        /// & ...

  7. Spark Streaming之dataset实例

    Spark Streaming是核心Spark API的扩展,可实现实时数据流的可扩展,高吞吐量,容错流处理. bin/spark-submit --class Streaming /home/wx/ ...

  8. 泛型集合与DataSet相互转换

    一.泛型转DataSet /// <summary> /// 泛型集合转换DataSet /// </summary> /// <typeparam name=" ...

  9. Spark Dataset DataFrame 操作

    Spark Dataset DataFrame 操作 相关博文参考 sparksql中dataframe的用法 一.Spark2 Dataset DataFrame空值null,NaN判断和处理 1. ...

随机推荐

  1. Android中的网络编程

    谷歌在Android6.0之后就废弃了使用HttpClinet进行网络连接.所以,这里需要重点学习的是通过HttpUrlConnect进行网络连接. String path="这里是你想要的 ...

  2. windows下python安装Numpy和Scipy模块

    安装 numpy: 去 http://sourceforge.net/projects/numpy/files/latest/download?source=files 下载相应的exe安装文件. 安 ...

  3. VUE,使用物理引擎Box2D设计类愤怒小鸟的击球游戏--基本架构设置

  4. Opencv 计算图片旋转角度

    vector<vector<Point>> vec_point;vector<Vec4i> hireachy;findContours(img_canny1, ve ...

  5. freemaker 课程

    品优购电商系统开发 第12章 网页静态化解决方案-Freemarker 传智播客.黑马程序员 1.网页静态化技术Freemarker 1.1为什么要使用网页静态化技术 网页静态化解决方案在实际开发中运 ...

  6. asp.net 母版页使用详解

    母版页是VS2005中新引入的一个概念,它很好地实现界面设计的模块化,并且实现实现了代码的重用.它就像婚纱影楼中的婚纱模板,同一个婚纱模板可以给不同的新人用,只要把他们的照片贴在已有的婚纱模板就可以形 ...

  7. phpmailer配置163邮箱

    function send_email($email = ''){ $this->autoRender = false; date_default_timezone_set('PRC'); re ...

  8. UEFI下win10+Ubuntu双启动后完全纯净卸载Ubuntu,重建BCD

    以下内容操作具有风险,操作前请提前备份数据.建议由有丰富经验的人使用,需要掌握diskpart. 背景 使用ubuntu+win10 dual boot后,需要重置回纯净win10系统. BCD是Bo ...

  9. 使用Selenium&PhantomJS的方式爬取代理

    前面已经爬取了代理,今天我们使用Selenium&PhantomJS的方式爬取快代理 :快代理 - 高速http代理ip每天更新. 首先分析一下快代理,如下 使用谷歌浏览器,检查,发现每个代理 ...

  10. ORB_SLAM2_Android

    链接:https://github.com/FangGet/ORB_SLAM2_Android README.md 说明文件 This Project is out of date 该工程过时了 Th ...