[bzoj1706]奶牛接力跑 题解 (矩阵快速幂(或者叫倍增Floyd?))
Description
FJ的N(2 <= N <= 1,000,000)头奶牛选择了接力跑作为她们的日常锻炼项目。至于进行接力跑的地点 自然是在牧场中现有的T(2 <= T <= 100)条跑道上。 农场上的跑道有一些交汇点,每条跑道都连结了两个不同的交汇点 I1_i和I2_i(1 <= I1_i <= 1,000; 1 <= I2_i <= 1,000)。每个交汇点都是至少两条跑道的端点。 奶牛们知道每条跑道的长度length_i(1 <= length_i <= 1,000),以及每条跑道连结的交汇点的编号 并且,没有哪两个交汇点由两条不同的跑道直接相连。你可以认为这些交汇点和跑道构成了一张图。 为了完成一场接力跑,所有N头奶牛在跑步开始之前都要站在某个交汇点上(有些交汇点上可能站着不只1头奶牛)。当然,她们的站位要保证她们能够将接力棒顺次传递,并且最后持棒的奶牛要停在预设的终点。 你的任务是,写一个程序,计算在接力跑的起点(S)和终点(E)确定的情况下,奶牛们跑步路径可能的最小总长度。显然,这条路径必须恰好经过N条跑道。
Input
* 第1行: 4个用空格隔开的整数:N,T,S,以及E
* 第2..T+1行: 第i+1为3个以空格隔开的整数:length_i,I1_i,以及I2_i, 描述了第i条跑道。
Output
* 第1行: 输出1个正整数,表示起点为S、终点为E,并且恰好经过N条跑道的路 径的最小长度
Sample Input
11 4 6
4 4 8
8 4 9
6 6 8
2 6 9
3 8 9
Sample Output
如果不是在线代专题里做这题 打死我也想不到正解
大概就是把矩阵乘法转化成Floyd的形式
100个边肯定连不了那么多点 所以离散化一下有用的点
然后放到矩阵里面
那么就可以通过类似矩阵快速幂的形式 从经过一条边的最短路->2条边->3条边……
乘n次就行了
#include<cstdio>
#include<iostream>
#include<cstring>
using namespace std;
int n,m,S,E,lim;
const int N=;
struct matrix
{
int a[][];
matrix()
{
memset(a,0x3f,sizeof(a));
}
};
matrix operator * (matrix x,matrix y)
{
matrix c;
for(int k=;k<=lim;k++)
for(int i=;i<=lim;i++)
for(int j=;j<=lim;j++)
c.a[i][j]=min(c.a[i][j],x.a[i][k]+y.a[k][j]);
return c;
};
int read()
{
int f=,x=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<='')x=x*+ch-'',ch=getchar();
return x*f;
}
int map[N];
matrix qpow(matrix a,int b)
{
matrix res=a;
while(b)
{
if(b&)res=res*a;
a=a*a;
b>>=;
}
return res;
}
int main()
{
n=read();m=read();S=read();E=read();
matrix g;
for(int i=;i<=m;i++)
{
int z=read(),x=read(),y=read();
if(!map[x])map[x]=++lim;
if(!map[y])map[y]=++lim;
x=map[x],y=map[y];
g.a[x][y]=g.a[y][x]=z;
}
matrix ans=qpow(g,n-);
cout<<ans.a[map[S]][map[E]]<<endl;
return ;
}
[bzoj1706]奶牛接力跑 题解 (矩阵快速幂(或者叫倍增Floyd?))的更多相关文章
- bzoj 1706: [usaco2007 Nov]relays 奶牛接力跑【矩阵乘法+Floyd】
唔不知道怎么说--大概核心是把矩阵快速幂的乘法部分变成了Floyd一样的东西,非常之神 首先把点离散一下,最多有200个,然后建立邻接矩阵,a[u][v]为(u,v)之间的距离,没路就是inf 然后注 ...
- BZOJ1706奶牛接力跑
这个东西思路还是不错的. 解法就是把矩阵幂的加法改成取min,乘法改成加法就好,和floyed是一样的.这样的话,矩阵操作一次就相当于松弛了一次最短路. 建矩阵的过程也比较简单,可以离散化,当然下面有 ...
- bzoj1875 [SDOI2009]HH去散步 矩阵快速幂
题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=1875 题解 如果没有这个"不能立刻沿着刚刚走来的路走回",那么这个题就是一 ...
- 【POJ2778】DNA Sequence 【AC自动机,dp,矩阵快速幂】
题意 题目给出m(m<=10)个仅仅由A,T,C,G组成的单词(单词长度不超过10),然后给出一个整数n(n<=2000000000),问你用这四个字母组成一个长度为n的长文本,有多少种组 ...
- HDU2604【矩阵快速幂】
思路: 把fm看成01,f-1,m-0: 不能存在101,111; dp[i]代表第i结尾的方案数: ①:结尾是0一定行:只要i-1序列里添个0就好了,dp[i]+=dp[i-1]: ②:结尾是1 ...
- POJ3735【矩阵快速幂】
逛了一圈...觉得这篇讲的比较清楚:传送门~ 简要概括: 1.线性代数的知识,单位矩阵的利用:(如果不知道单位矩阵的,先去补习一下线代,做几题行列式就会了): 2.然后构造好矩阵以后,直接做M次乘积运 ...
- 华东交通大学2018年ACM“双基”程序设计竞赛 C. 公式题 (2) (矩阵快速幂)
题目链接:公式题 (2) 比赛链接:华东交通大学2018年ACM"双基"程序设计竞赛 题目描述 令f(n)=2f(n-1)+3f(n-2)+n,f(1)=1,f(2)=2 令g(n ...
- HDU4565-数学推导求递推公式+矩阵快速幂
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4565 我们带着这个根号是没法计算的 我们仔细观察一下,(a+sqrt(b))^n用二项式定理展开,我 ...
- bzoj1706 [usaco2007 Nov]relays 奶牛接力跑 矩阵快速幂
题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=1706 题解 换个方法定义矩阵乘法:先加再取 \(\min\). 对于一个 \(n\times ...
随机推荐
- LA 3971 Assemble(二分)
题目: 给你b元钱,让你组装一台电脑,有n个配件,属性有 种类 名字 价格 品质,每种类型选至少一个,并且最小品质最大.输出这个最大的最小品质. 白书上说了,最小值最大的问题一般是二分来求解答案.在这 ...
- CF1061E Politics E. Politics 解题报告
CF1061E Politics E. Politics 考虑利用树的性质,因为是子树问题,所以放到dfs序上. 只考虑一个树,问题是每个区间选恰好\(k\)个.因为区间其实是子树,所以区间要么包含, ...
- Network基础(二):数制转换
一.数制转换 目标: 1)请将下列数字转换为十进制数: (110010011111)2 .(10110101110)2 2)请将下列十进制数转换为二进制: 156.2608.1043 方案: 使用按权 ...
- linux安装相关软件
XShell上传jdk文件到Linux并安装配置1.yum -y install lrzsz2.sudo rz选文件3.sudo tar -zxvf jdk-8u131-linux-x64.tar.g ...
- django 之模板层
1. 模板语法之变量 格式:{{ 变量名 }} 句点符,深度查询(可以点到方法,不要加括号,只能是无参的方法) 代码 视图函数: from django.shortcuts import render ...
- Hello cnblogs!
console.log('Hello cnblogs')!
- java8 Date LocalDate LocaDateTime 互相转化
java 8中 java.util.Date 类新增了两个方法,分别是from(Instant instant)和toInstant()方法 // Obtains an instance of Dat ...
- InnoDB B树 锁
InnoDB B树 叶子=>主键+数记录非叶子=>主键1+主键3...主键4 事务和行锁 索引项加锁 相等条件来访问更新数据,避免使用范围条件 (1)InnoDB的行销是基于索引实现的,如 ...
- hive HQL笔记
#建表 create table sign_in (uri string , test string) row format delimited fields terminated by '|'; # ...
- 分布式-技术专区-Redis分布式锁原理实现
在很多场景中,我们为了保证数据的最终一致性,需要很多的技术方案来支持,比如分布式事务.分布式锁等.那具体什么是分布式锁,分布式锁应用在哪些业务场景.如何来实现分布式锁呢?今天来探讨分布式锁这个话题. ...