Problem Description
You may heard of the Joseph Problem, the story comes from a Jewish historian living in 1st century. He and his 40 comrade soldiers were trapped in a cave, the exit of which was blocked by Romans.
They chose suicide over capture and decided that they would form a circle and start killing themselves using a step of three.
Josephus states that by luck or maybe by the hand of God, he and another man remained the last and gave up to the Romans.
Now the problem is much easier: we have N men stand in a line and labeled from 1 to N, for each round, we choose the first man, the k+1-th one, the 2*k+1-th one and so on, until the end of the line.
These poor guys will be kicked out of the line and we will execute them immediately (may be head chop, or just shoot them, whatever), and then we start the next round with the remaining guys.
The little difference between the Romans and us is, in our version of story, NO ONE SURVIVES. Your goal is to find out the death sequence of the man.
For example, we have N = 7 prisoners, and we decided to kill every k=2 people in the line. At the beginning, the line looks like this:
1 2 3 4 5 6 7
after the first round, 1 3 5 7 will be executed, we have
2 4 6
and then, we will kill 2 6 in the second round. At last 4 will be executed. So, you need to output 1 3 5 7 2 6 4. Easy, right?
But the output maybe too large, we will give you Q queries, each one contains a number m, you need to tell me the m-th number in the death sequence.
 Input
Multiple cases. The first line contains a number T, means the number of test case.
For every case, there will be three integers N (1<=N<=3000000), K(1<=K), and Q(1<=Q<=1000000), which indicate the number of prisoners, the step length of killing,
and the number of query. Next Q lines, each line contains one number m(1<=m<=n).
 Output
For each query m, output the m-th number in the death sequence.
Sample Input
1 7 2 7 1 2 3 4 5 6 7
 
将约瑟夫环拉成一条直线,一开始一共n个人,每次从第一个人开始(杀掉第一个)从前向后依次每隔k个人杀一个人,最后大家都被干掉了,然后就形成了一个死亡序列
有m次询问,问你在死亡序列中的第x个人编号是多少.
 
思路:
如果我们把他们的下标从0开始,那么第一批死的人下标肯定满足i%k==0
继续想,杀掉一批人以后活着的人会向前补空位,加上第i个人在这轮没有被杀,那么他下轮的位置就会在i-i/k-1.
换句话说第i个人会比第i-i/k-1多活一轮
然后我们发现我们花O(n)的时间就能递推出每个人是在第几轮的第几个死的.
我们开一个pair 保存每个人是 第几轮 和第几个
我们再对轮数取个前缀和.就能知道他在总队列里面是第几个了
一开始想到补空位的想法了,但是没有深想,利用递推的思路,其实在线性时间内就可以求出答案了
代码如下:
 #include <bits/stdc++.h>

 using namespace std;
const int maxn=3e6+;
int cnt[maxn];
int ans[maxn];//最后的答案
int n,k,q;
pair<int,int> dp[maxn];
int main()
{
//freopen("de.txt","r",stdin);
int t;
scanf("%d",&t);
while (t--){
scanf("%d%d%d",&n,&k,&q);
memset(cnt,,sizeof cnt);
for (int i=;i<n;++i){
dp[i].first=i%k?(dp[i-i/k-].first+):;
dp[i].second=cnt[dp[i].first]++;//求出来第i人的轮数,相应轮数cnt++
}
for (int i=;i<maxn;++i){
if (cnt[i]==)
break;
cnt[i]+=cnt[i-];//处理前缀和,即第i轮之前一共杀死多少人
}
for (int i=;i<n;++i){
ans[(dp[i].first?cnt[dp[i].first-]:)+dp[i].second]=i;
}
for (int i=;i<q;++i){
int x;
scanf("%d",&x);
printf("%d\n",ans[x-]+);
}
}
return ;
}

hdu 5860 Death Sequence(递推+脑洞)的更多相关文章

  1. HDU 5860 Death Sequence(递推)

    HDU 5860 Death Sequence(递推) 题目链接http://acm.split.hdu.edu.cn/showproblem.php?pid=5860 Description You ...

  2. HDU 5860 Death Sequence(死亡序列)

    p.MsoNormal { margin: 0pt; margin-bottom: .0001pt; text-align: justify; font-family: Calibri; font-s ...

  3. HDU 5950 Recursive sequence 递推转矩阵

    Recursive sequence Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Other ...

  4. hdu 5950 Recursive sequence 递推式 矩阵快速幂

    题目链接 题意 给定\(c_0,c_1,求c_n(c_0,c_1,n\lt 2^{31})\),递推公式为 \[c_i=c_{i-1}+2c_{i-2}+i^4\] 思路 参考 将递推式改写\[\be ...

  5. 2016 Multi-University Training Contest 10 || hdu 5860 Death Sequence(递推+单线约瑟夫问题)

    题目链接:http://acm.split.hdu.edu.cn/showproblem.php?pid=5860 题目大意:给你n个人排成一列编号,每次杀第一个人第i×k+1个人一直杀到没的杀.然后 ...

  6. HDU 5860 Death Sequence

    用线段树可以算出序列.然后o(1)询问. #pragma comment(linker, "/STACK:1024000000,1024000000") #include<c ...

  7. HDU 2085 核反应堆 --- 简单递推

    HDU 2085 核反应堆 /* HDU 2085 核反应堆 --- 简单递推 */ #include <cstdio> ; long long a[N], b[N]; //a表示高能质点 ...

  8. hdu-5496 Beauty of Sequence(递推)

    题目链接: Beauty of Sequence Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java ...

  9. hdu 2604 Queuing(dp递推)

    昨晚搞的第二道矩阵快速幂,一开始我还想直接套个矩阵上去(原谅哥模板题做多了),后来看清楚题意后觉得有点像之前做的数位dp的水题,于是就用数位dp的方法去分析,推了好一会总算推出它的递推关系式了(还是菜 ...

随机推荐

  1. CGContextRef 使用小记

    . 用CGContextRef 画文字 在 UIView的 - (void)drawRect:(CGRect)rect {} 方法中进行 CGContextRef context = UIGraphi ...

  2. 用C#编写ActiveX控件,开发浏览器控件,注册ActiveX 控件

    用C#编写ActiveX控件,开发浏览器控件,注册ActiveX 控件用C#编写ActiveX控件 开发浏览器控件这是本控件开发完成后的一个简单应用.我们可以利用它以本地文件夹为单位来批量更新服务器的 ...

  3. buuctf | [强网杯 2019]随便注

    1' and '0,1' and '1  : 单引号闭合 1' order by 3--+ : 猜字段 1' union select 1,database()# :开始注入,发现正则过滤 1' an ...

  4. SelfCert wcf中 生成x5.09证书的工具

    http://blog.pluralsight.com/selfcert-create-a-self-signed-certificate-interactively-gui-or-programma ...

  5. jenkins-参数化构建插件:Choice Parameter

    参考: 谢谢大佬的总结: https://www.cnblogs.com/zhaojingyu/p/9862371.html 使用方式 step1: 添加参数,选择Choice Parameter,并 ...

  6. iOS OpenGL ES简单绘制三角形

    OpenGL 是用于2D/3D图形编程的一套基于C语言的统一接口. windows,Linux,Unix上均可兼容. OpenGL ES 是在OpenGL嵌入式设备上的版本, android/iOS ...

  7. R语言利用ROCR评测模型的预测能力

    R语言利用ROCR评测模型的预测能力 说明 受试者工作特征曲线(ROC),这是一种常用的二元分类系统性能展示图形,在曲线上分别标注了不同切点的真正率与假正率.我们通常会基于ROC曲线计算处于曲线下方的 ...

  8. 重新认识Maven

    PS:第一次接触maven大约是两年前吧,隐约记得之前都是人工寻找并下载很多jar,放在项目的lib中(表示太年轻,没有接触过Ant或者其他类似的工具,就不找别人写的比较了).懒人永远有着自己的小聪明 ...

  9. Java空对象模式

    在“空对象”模式中,空对象将替换NULL对象实例的检查.而不是检查一个空值,Null对象反映一个无关的关系(即什么也不做). 这种Null对象还可以用于在数据不可用时提供默认行为. 在空对象模式(Nu ...

  10. 转 使用Python的logging.config.fileConfig配置日志

    Python的logging.config.fileConfig方式配置日志,通过解析conf配置文件实现.文件 logglogging.conf 配置如下: [loggers]keys=root,f ...