(上不了p站我要死了)

Description

ftiasch 有 N 个物品, 体积分别是 W1, W2, …, WN。 由于她的疏忽, 第 i 个物品丢失了。 “要使用剩下的 N - 1 物品装满容积为 x 的背包,有几种方法呢?” – 这是经典的问题了。她把答案记为 Count(i, x) ,想要得到所有1 <= i <= N, 1 <= x <= M的 Count(i, x) 表格。

Input

第1行:两个整数 N (1 ≤ N ≤ 2 × 103) 和 M (1 ≤ M ≤ 2 × 103),物品的数量和最大的容积。

第2行: N 个整数 W1, W2, …, WN, 物品的体积。

Output

一个 N × M 的矩阵, Count(i, x)的末位数字。

Sample Input

3 2

1 1 2

Sample Output

11

11

21

HINT

如果物品3丢失的话,只有一种方法装满容量是2的背包,即选择物品1和物品2。

如果不减去某个物品,那么这问题就很经(jian)典(dan)了。

当然,我们知道总方案数减去用i物品的方案数就是答案了。

如何求得用i物品的方案数呢?即为count(i, j-w[i])

所以count(i, j)=f( j )-count(i, j-w[i])

然后还考验一个分析能力:这个总方案数是要爆long long 的,所以要膜(不然他让你只输出末尾数字干嘛)

代码:

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std; const int N=2000+5; int n,m,w[N],f[N],c[N][N]; int main(){
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++) scanf("%d",&w[i]);
f[0]=1;
for(int i=1;i<=n;i++){
for(int j=m;j>=w[i];j--){
f[j]+=f[j-w[i]];
f[j]%=10;
}
}
for(int i=1;i<=n;i++){
c[i][0]=1;
for(int j=1;j<=m;j++){
if(j<w[i]) c[i][j]=f[j];
else c[i][j]=(f[j]-c[i][j-w[i]]+10)%10;
}
}
for(int i=1;i<=n;i++){
for(int j=1;j<=m;j++){
printf("%d",c[i][j]%10);
}
printf("\n");
}
return 0;
}

【bozj2287】【[POJ Challenge]消失之物】维护多值递推的更多相关文章

  1. [bzoj2287][poj Challenge]消失之物_背包dp_容斥原理

    消失之物 bzoj-2287 Poj Challenge 题目大意:给定$n$个物品,第$i$个物品的权值为$W_i$.记$Count(x,i)$为第$i$个物品不允许使用的情况下拿到重量为$x$的方 ...

  2. POJ Challenge消失之物

    Description ftiasch 有 N 个物品, 体积分别是 W1, W2, ..., WN. 由于她的疏忽, 第 i 个物品丢失了. "要使用剩下的 N - 1 物品装满容积为 x ...

  3. bzoj2287:[POJ Challenge]消失之物

    思路:首先先背包预处理出f[x]表示所有物品背出体积为x的方案数.然后统计答案,利用dp. C[i][j]表示不用物品i,组成体积j的方案数. 转移公式:C[i][j]=f[j]-C[i][j-w[i ...

  4. BZOJ.2287.[POJ Challenge]消失之物(退背包)

    BZOJ 洛谷 退背包.和原DP的递推一样,再减去一次递推就行了. f[i][j] = f[i-1][j-w[i]] + f[i-1][j] f[i-1][j] = f[i][j] - f[i-1][ ...

  5. bzoj2287 [POJ Challenge]消失之物

    题目链接 少打个else 调半天QAQ 重点在47行,比较妙 #include<algorithm> #include<iostream> #include<cstdli ...

  6. 【bzoj2287】[POJ Challenge]消失之物 背包dp

    题目描述 ftiasch 有 N 个物品, 体积分别是 W1, W2, ..., WN. 由于她的疏忽, 第 i 个物品丢失了. “要使用剩下的 N - 1 物品装满容积为 x 的背包,有几种方法呢? ...

  7. poj 2229 【完全背包dp】【递推dp】

    poj 2229 Sumsets Time Limit: 2000MS   Memory Limit: 200000K Total Submissions: 21281   Accepted: 828 ...

  8. POJ 3734 Blocks(矩阵快速幂+矩阵递推式)

    题意:个n个方块涂色, 只能涂红黄蓝绿四种颜色,求最终红色和绿色都为偶数的方案数. 该题我们可以想到一个递推式 .   设a[i]表示到第i个方块为止红绿是偶数的方案数, b[i]为红绿恰有一个是偶数 ...

  9. BZOJ2287: 【POJ Challenge】消失之物

    2287: [POJ Challenge]消失之物 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 254  Solved: 140[Submit][S ...

随机推荐

  1. numpy数组的运算

    numpy数组的运算 数组的乘法 >>> import numpy as np >>> arr=np.array([[1,2,3],[4,5,6]]) >&g ...

  2. Luogu P1084 [NOIP2012]疫情控制

    题目 首先我们二分一下答案. 然后我们用倍增让军队往上跳,最多先跳到根的子节点. 如果当前军队可以到达根节点,那么记录一下它的编号和它到达根节点后还可以走的时间. 并且我们记录根节点的叶子节点上到根节 ...

  3. Redis的配置与数据类型

    redis window系统的redis是微软团队根据官方的linux版本高仿的 官方原版: https://redis.io/ 中文官网:http://www.redis.cn 1. redis下载 ...

  4. Vue-Quill-Editor 富文本编辑器

    通俗来说:富文本,就是比较丰富的文本编辑器.普通的框只能输入文字,而富文本还能给文字加颜色样式等. 富文本编辑器有很多,例如:KindEditor.Ueditor.但并不原生支持vue 但是我们今天要 ...

  5. 机器学习-KNN算法详解与实战

    最邻近规则分类(K-Nearest Neighbor)KNN算法 1.综述 1.1 Cover和Hart在1968年提出了最初的邻近算法 1.2 分类(classification)算法 1.3 输入 ...

  6. JS 页面跳转,参数的传递

    当我们通过location.replace()进行页面的跳转时,我们想进行参数的传递,当时学习的时候,以前在网上找过获取方法,已经忘记出处在哪里了.获取方法大概是这样的: 1.将参数通过拼接的方式拼接 ...

  7. Python 操作sqlite数据库及保存查询numpy类型数据(一)

    # -*- coding: utf-8 -*- ''' Created on 2019年3月6日 @author: Administrator ''' import sqlite3 import nu ...

  8. python基础操作---list

    #coding:utf-8 list1 = ['physics', 'chemistry', 1997, 2000]; list2 = [1, 2, 3, 4, 5 ]; list3 = [" ...

  9. constexpr

    unsigned cnt = 10; string bad[cnt];//错误cnt不是常量表达式 constexpr unsigned cnt = 10; string bad[cnt];//正确

  10. AGC009题解

    为了1天4题的flag不倒所以开新坑... B. 考虑把这棵树直接建出来,f[i]表示i最少的比赛次数,然后按照定义转移就行了. //Love and Freedom. #include<cst ...