【bozj2287】【[POJ Challenge]消失之物】维护多值递推
(上不了p站我要死了)
Description
ftiasch 有 N 个物品, 体积分别是 W1, W2, …, WN。 由于她的疏忽, 第 i 个物品丢失了。 “要使用剩下的 N - 1 物品装满容积为 x 的背包,有几种方法呢?” – 这是经典的问题了。她把答案记为 Count(i, x) ,想要得到所有1 <= i <= N, 1 <= x <= M的 Count(i, x) 表格。
Input
第1行:两个整数 N (1 ≤ N ≤ 2 × 103) 和 M (1 ≤ M ≤ 2 × 103),物品的数量和最大的容积。
第2行: N 个整数 W1, W2, …, WN, 物品的体积。
Output
一个 N × M 的矩阵, Count(i, x)的末位数字。
Sample Input
3 2
1 1 2
Sample Output
11
11
21
HINT
如果物品3丢失的话,只有一种方法装满容量是2的背包,即选择物品1和物品2。
如果不减去某个物品,那么这问题就很经(jian)典(dan)了。
当然,我们知道总方案数减去用i物品的方案数就是答案了。
如何求得用i物品的方案数呢?即为count(i, j-w[i])
所以count(i, j)=f( j )-count(i, j-w[i])
然后还考验一个分析能力:这个总方案数是要爆long long 的,所以要膜(不然他让你只输出末尾数字干嘛)
代码:
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=2000+5;
int n,m,w[N],f[N],c[N][N];
int main(){
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++) scanf("%d",&w[i]);
f[0]=1;
for(int i=1;i<=n;i++){
for(int j=m;j>=w[i];j--){
f[j]+=f[j-w[i]];
f[j]%=10;
}
}
for(int i=1;i<=n;i++){
c[i][0]=1;
for(int j=1;j<=m;j++){
if(j<w[i]) c[i][j]=f[j];
else c[i][j]=(f[j]-c[i][j-w[i]]+10)%10;
}
}
for(int i=1;i<=n;i++){
for(int j=1;j<=m;j++){
printf("%d",c[i][j]%10);
}
printf("\n");
}
return 0;
}
【bozj2287】【[POJ Challenge]消失之物】维护多值递推的更多相关文章
- [bzoj2287][poj Challenge]消失之物_背包dp_容斥原理
消失之物 bzoj-2287 Poj Challenge 题目大意:给定$n$个物品,第$i$个物品的权值为$W_i$.记$Count(x,i)$为第$i$个物品不允许使用的情况下拿到重量为$x$的方 ...
- POJ Challenge消失之物
Description ftiasch 有 N 个物品, 体积分别是 W1, W2, ..., WN. 由于她的疏忽, 第 i 个物品丢失了. "要使用剩下的 N - 1 物品装满容积为 x ...
- bzoj2287:[POJ Challenge]消失之物
思路:首先先背包预处理出f[x]表示所有物品背出体积为x的方案数.然后统计答案,利用dp. C[i][j]表示不用物品i,组成体积j的方案数. 转移公式:C[i][j]=f[j]-C[i][j-w[i ...
- BZOJ.2287.[POJ Challenge]消失之物(退背包)
BZOJ 洛谷 退背包.和原DP的递推一样,再减去一次递推就行了. f[i][j] = f[i-1][j-w[i]] + f[i-1][j] f[i-1][j] = f[i][j] - f[i-1][ ...
- bzoj2287 [POJ Challenge]消失之物
题目链接 少打个else 调半天QAQ 重点在47行,比较妙 #include<algorithm> #include<iostream> #include<cstdli ...
- 【bzoj2287】[POJ Challenge]消失之物 背包dp
题目描述 ftiasch 有 N 个物品, 体积分别是 W1, W2, ..., WN. 由于她的疏忽, 第 i 个物品丢失了. “要使用剩下的 N - 1 物品装满容积为 x 的背包,有几种方法呢? ...
- poj 2229 【完全背包dp】【递推dp】
poj 2229 Sumsets Time Limit: 2000MS Memory Limit: 200000K Total Submissions: 21281 Accepted: 828 ...
- POJ 3734 Blocks(矩阵快速幂+矩阵递推式)
题意:个n个方块涂色, 只能涂红黄蓝绿四种颜色,求最终红色和绿色都为偶数的方案数. 该题我们可以想到一个递推式 . 设a[i]表示到第i个方块为止红绿是偶数的方案数, b[i]为红绿恰有一个是偶数 ...
- BZOJ2287: 【POJ Challenge】消失之物
2287: [POJ Challenge]消失之物 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 254 Solved: 140[Submit][S ...
随机推荐
- Discrete Mathematics and Its Applications | 1 CHAPTER The Foundations: Logic and Proofs | 1.1 Propositional Logic
propositional variables (or statement variables), letters used for propositional variables are p, q, ...
- oracle_fdw安装及使用(无法访问oracle存储过程等对象)
通过oracle_fdw可以访问oracle中的一些表和视图,也可以进行修改,尤其是给比较复杂的系统使用非常方便. (但不能使用oracle_fdw来访问oracle的存储过程.包.函数.序列等对象) ...
- org.apache.ibatis.exceptions.PersistenceException: ### Error querying database. Cause: java.sql.SQLException: The server time zone value 'Öйú±ê׼ʱ¼ä' is unrecognized or represents mor
今天在用junit测试mybits程序是遇到一个问题,报错为: org.apache.ibatis.exceptions.PersistenceException: ### Error queryin ...
- SQL Server之索引解析(二)
1.堆表 堆表通过IAM连接一起,查询时全表扫描. 1.1 非聚集索引 结构 叶子节点数据结构:行数据结构+Rid(8字节) 中间节点数据结构: (非聚集非唯一索引)行数据结构+Page(4)+2+ ...
- C++ 中的new、malloc、namespace
1,这些新引入的成员想要解决 C 语言中存在的一些问题, 2,动态内存分配: 1,C++ 中的动态内存分配: 1,C++ 中通过 new 关键字进行基于类型的动态内存申请: 1,C 语言中自身不包含动 ...
- laravel5.5结合bootstrap上传插件fileinput 上传图片
引入相关js <script src="{{ asset('bootstrap-fileinput/js/fileinput.js') }}"></script& ...
- Java斗地主
package com.biggw.day14.demo05; import java.util.*; /** * @author gw * @date 2019/11/6 0006 下午 17:20 ...
- Python 入门之编码
Python 入门之编码 1.编码初识: (1)ASCII码 :256 个 英文1个字节,不支持中文 (2)GBK(国标) : 英文1个字节 中文两个字节 (3)unicode (万国码):英文4个字 ...
- Django之F和Q查询
一.F查询 rom django.db.models import F from app01.models import Book Book.objects.update(price=F(" ...
- Protobuf(一)——Protobuf简介
Protobuf简介 什么是 Google Protocol Buffer? 假如您在网上搜索,应该会得到类似这样的文字介绍: Google Protocol Buffer( 简称 Proto ...