分析

关于这道题套路到不能再套路了没什么好说的,其实发这篇博客的目的只是为了贴一个线性筛的模板。

代码

#include <bits/stdc++.h>
#define rin(i,a,b) for(register int i=(a);i<=(b);++i)
#define irin(i,a,b) for(register int i=(a);i>=(b);--i)
#define trav(i,a) for(register int i=head[a];i;i=e[i].nxt)
typedef long long LL;
using std::cin;
using std::cout;
using std::endl; inline int read(){
int x=0,f=1;char ch=getchar();
while(!isdigit(ch)){if(ch=='-')f=-1;ch=getchar();}
while(isdigit(ch)){x=x*10+ch-'0';ch=getchar();}
return x*f;
} const int MAXN=10000005; int n,cnt,prm[MAXN>>2];
LL f[MAXN];int low[MAXN];
bool vis[MAXN]; void init(int n){
f[1]=1;
rin(i,2,n){
if(!vis[i]){
prm[++cnt]=i;
f[i]=i-2;
low[i]=i;
}
rin(j,1,cnt){
if(i*prm[j]>n) break;
vis[i*prm[j]]=true;
if(i%prm[j]==0){
if(i==low[i]){
if(i==prm[j]) f[i*prm[j]]=1ll*prm[j]*prm[j]-2*prm[j]+1;
else f[i*prm[j]]=f[i]*prm[j];
}
else{
f[i*prm[j]]=f[i/low[i]]*f[low[i]*prm[j]];
}
low[i*prm[j]]=low[i]*prm[j];
break;
}
f[i*prm[j]]=f[i]*f[prm[j]];
low[i*prm[j]]=prm[j];
}
}
rin(i,1,n) f[i]+=f[i-1];
} int main(){
int T=read();
init(10000000);
while(T--){
int n=read();LL ans=0;
for(int i=1,nxti=0;i<=n;i=nxti){
nxti=n/(n/i)+1;
ans+=1ll*(n/i)*(n/i)*(f[nxti-1]-f[i-1]);
}
printf("%lld\n",ans);
}
return 0;
}

[BZOJ4804]欧拉心算:线性筛+莫比乌斯反演的更多相关文章

  1. 【bzoj2401】陶陶的难题I “高精度”+欧拉函数+线性筛

    题目描述 求 输入 第一行包含一个正整数T,表示有T组测试数据.接下来T<=10^5行,每行给出一个正整数N,N<=10^6. 输出 包含T行,依次给出对应的答案. 样例输入 7 1 10 ...

  2. BZOJ4804 欧拉心算(莫比乌斯反演+欧拉函数+线性筛)

    一通套路后得Σφ(d)μ(D/d)⌊n/D⌋2.显然整除分块,问题在于怎么快速计算φ和μ的狄利克雷卷积.积性函数的卷积还是积性函数,那么线性筛即可.因为μ(pc)=0 (c>=2),所以f(pc ...

  3. Bzoj 2818: Gcd 莫比乌斯,分块,欧拉函数,线性筛

    2818: Gcd Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 3241  Solved: 1437[Submit][Status][Discuss ...

  4. 【bzoj2190】【仪仗队】欧拉函数+线性筛(浅尝ACM-J)

    向大(hei)佬(e)势力学(di)习(tou) Description 作为体育委员,C君负责这次运动会仪仗队的训练.仪仗队是由学生组成的N * N的方阵,为了保证队伍在行进中整齐划一,C君会跟在仪 ...

  5. 【BZOJ-2440】完全平方数 容斥原理 + 线性筛莫比乌斯反演函数 + 二分判定

    2440: [中山市选2011]完全平方数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2371  Solved: 1143[Submit][Sta ...

  6. [BZOJ4804]欧拉心算

    题面戳我 题意:求 \[\sum_{i=1}^{n}\sum_{j=1}^{n}\phi(\gcd(i,j))\] 多组数据,\(n\le10^7\). sol SBT 单组数据\(O(\sqrt n ...

  7. 【BZOJ2401】陶陶的难题I 欧拉函数+线性筛

    [BZOJ2401]陶陶的难题I 题意:求,n<=1000000,T<=100000 题解:直接做是n*sqrt(n)的,显然会TLE,不过这题a和b都是循环到n,那么就可以进行如下的神奇 ...

  8. HDU6434 Count【欧拉函数 线性筛】

    HDU6434 I. Count T次询问,每次询问\(\sum_{i=1}^{n}\sum_{j=1}^{n-1}[gcd(i-j,i+j)=1]\) \(T\le 1e5, n \le 2e7\) ...

  9. BZOJ4804: 欧拉心算(莫比乌斯反演 线性筛)

    题意 求$$\sum_1^n \sum_1^n \phi(gcd(i, j))$$ $T \leqslant 5000, N \leqslant 10^7$ Sol 延用BZOJ4407的做法 化到最 ...

随机推荐

  1. 小记---------网页采集之Jsoup

        Jsoup是一款Java解析器,相当于httpClient解析器 功能:①:从一个URL,文件或字符串中解析HTML         ②:使用DOM或CSS选择器来查找.取出数据       ...

  2. MySQL数据库主从同步实战过程

       Linux系统MySQL数据库主从同步实战过程 安装环境说明 系统环境: [root@~]# cat /etc/redhat-release CentOS release 6.5 (Final) ...

  3. springboot在集成mybatis的时候老是报错 The server time zone value '�й���׼ʱ��' is unrecognized

    我已经解决了,感谢万能网友. 解决办法参见:https://blog.csdn.net/yunfeng482/article/details/86698133

  4. webstorm 如何去掉下划线

    当前webstorm版本:2018.3.5 百度了也没找到解决办法,最终结合了和群友的给的位置,找到了修改地方,只能怪版本迭代太快了,要适应 右上角Effects点掉就可以了

  5. grunt接触

    grunt使用 以下内容均为已经安装好grunt,具体grunt的安装过程不述,可以参考grunt的相关资料. 1.项目初始化grunt 在项目文件夹的根目录下面,打开命令行grunt init,执行 ...

  6. CSS hack(过滤器)

    CSS hack概念: 是针对不同浏览器对同一段代码解析不同的处理方案:<解决兼容性问题> 属性设置在不同版本的IE里会出现不兼容问题,css hack解决兼容主流浏览器和IE 常见的过滤 ...

  7. Codeforces 987 K预处理BFS 3n,7n+1随机结论题/不动点逆序对 X&Y=0连边DFS求连通块数目

    A /*Huyyt*/ #include<bits/stdc++.h> #define mem(a,b) memset(a,b,sizeof(a)) #define pb push_bac ...

  8. 隐马尔可夫模型中基于比例因子的前向算法(java实现)

    直接上干货哈,其他子算法,后续补上.                                                                  System.out.print ...

  9. Spring 整合过滤器

    过滤器Filter是Servlet的一个技术,可通过过滤器对请求进行拦截,比如读取session判断用户是否登录.判断访问的请求URL是否有权限. 1.使用@WebFilter注解 controlle ...

  10. 解决 i18n properties文件中文必须是unicode的问题

    解决 i18n properties文件中文必须是unicode的问题 i18n  unicode  UTF-8  目前产品需要做国际化,但 java 的 I18N 资源文件中中文必须转换成 unic ...