[NOI2007]社交网络

Description

在社交网络(socialnetwork)的研究中,我们常常使用图论概念去解释一些社会现象。不妨看这样的一个问题。

在一个社交圈子里有n个人,人与人之间有不同程度的关系。我们将这个关系网络对应到一个n个结点的无向图上,两个不同的人若互相认识,则在他们对应的结点之间连接一条无向边,并附上一个正数权值c,c越小,表示两个人之间的关系越密切。我们可以用对应结点之间的最短路长度来衡量两个人s和t之间的关系密切程度,注意到最短路径上的其他结点为s和t的联系提供了某种便利,即这些结点对于s和t之间的联系有一定的重要程度。我们可以通过统计经过一个结点v的最短路径的数目来衡量该结点在社交网络中的重要程度。考虑到两个结点A和B之间可能会有多条最短路径。我们修改重要程度的定义如下:令Cs,t表示从s到t的不同的最短路的数目,Cs,t(v)表示经过v从s到t的最短路的数目;则定义

为结点v在社交网络中的重要程度。为了使I(v)和Cs,t(v)有意义,我们规定需要处理的社交网络都是连通的无向图,即任意两个结点之间都有一条有限长度的最短路径。现在给出这样一幅描述社交网络的加权无向图,请你求出每一个结点的重要程度。

Input

输入第一行有两个整数n和m,表示社交网络中结点和无向边的数目。在无向图中,我们将所有结点从1到n进行编号。接下来m行,每行用三个整数a,b,c描述一条连接结点a和b,权值为c的无向边。注意任意两个结点之间最多有一条无向边相连,无向图中也不会出现自环(即不存在一条无向边的两个端点是相同的结点)。n≤100;m≤4500,任意一条边的权值 c 是正整数,满足:1≤c≤1000。所有数据中保证给出的无向图连通,且任意两个结点之间的最短路径数目不超过 10^10

Output

输出包括n行,每行一个实数,精确到小数点后3位。第i行的实数表示结点i在社交网络中的重要程度。

Sample Input

4 4

1 2 1

2 3 1

3 4 1

4 1 1

Sample Output

1.000

1.000

1.000

1.000

HINT

社交网络如下图所示。



对于 1 号结点而言,只有 2 号到 4 号结点和 4 号到 2 号结点的最短路经过 1 号结点,而 2 号结点和 4 号结点之间的最短路又有 2 条。因而根据定义,1 号结点的重要程度计算为 1/2 + 1/2 = 1 。由于图的对称性,其他三个结点的重要程度也都是 1 。

最短路+任意两点间最短路及其条数

这道题用\(Floyed\)比较方便,先处理出任意两个点之间的最短距离,同时记录两点间最短距离的条数。

\(a[i][j]\)表示从\(i\)走到\(j\)的最短路

\(sum[i][j]\)表示从\(i\)到\(j\)的最短路条数

if(a[i][j]>a[i][k]+a[k][j])
a[i][j]=a[i][k]+a[k][j],sum[i][j]=sum[i][k]*sum[k][j];
else if(a[i][j]==a[i][k]+a[k][j])
sum[i][j]+=sum[i][k]*sum[k][j];

然后直接枚举\(s,t\),更新其他的点的答案。

#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<queue>
#define lll long long
using namespace std;
lll read()
{
lll x=0,w=1;char ch=getchar();
while(ch>'9'||ch<'0') {if(ch=='-')w=-1;ch=getchar();}
while(ch>='0'&&ch<='9') x=(x<<3)+(x<<1)+ch-'0',ch=getchar();
return x*w;
}
const int N=110;
int n,m,qwe,x,y,z;
lll a[N][N],sum[N][N];
double ans[N];
int main()
{
n=read();m=read();memset(a,0x3f,sizeof(a));
for(int i=1;i<=m;i++)
{
x=read();y=read();z=read();
a[x][y]=a[y][x]=z;sum[x][y]=sum[y][x]=1;
}
for(int k=1;k<=n;k++)
for(int i=1;i<=n;i++)
{
if(i==k) continue;
for(int j=1;j<=n;j++)
{
if(j==i||j==k) continue;
if(a[i][j]>a[i][k]+a[k][j])
a[i][j]=a[i][k]+a[k][j],sum[i][j]=sum[i][k]*sum[k][j];
else if(a[i][j]==a[i][k]+a[k][j]) sum[i][j]+=sum[i][k]*sum[k][j];
}
}
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
{
if(i==j) continue;
for(int k=1;k<=n;k++)
{
if(k==i||k==j) continue;
if(a[i][k]+a[k][j]==a[i][j])
{
ans[k]+=sum[i][k]*sum[k][j]*1.000/sum[i][j];
}
}
}
for(int i=1;i<=n;i++) printf("%.3lf\n",ans[i]);
}

[NOI2007]社交网络(最短路)的更多相关文章

  1. BZOJ1491 [NOI2007]社交网络[最短路计数]

    $n$非常的小,结合题目计算式可以想到$O(n^3)$暴枚$s,t,v$,看$v$在不在$s\to t$最短路上($dis_{s,v}+dis_{v,t}=dis_{s,v}$是$v$在两点最短路上的 ...

  2. BZOJ 1491 [NOI2007]社交网络

    1491: [NOI2007]社交网络 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 1159  Solved: 660[Submit][Status] ...

  3. 图论(floyd算法):NOI2007 社交网络

    [NOI2007] 社交网络 ★★   输入文件:network1.in   输出文件:network1.out   简单对比 时间限制:1 s   内存限制:128 MB [问题描述] 在社交网络( ...

  4. BZOJ 1491: [NOI2007]社交网络( floyd )

    floyd...求最短路时顺便求出路径数. 时间复杂度O(N^3) ------------------------------------------------------------------ ...

  5. 洛谷 P2047 [NOI2007]社交网络 解题报告

    P2047 [NOI2007]社交网络 题目描述 在社交网络(\(social\) \(network\))的研究中,我们常常使用图论概念去解释一些社会现象.不妨看这样的一个问题.在一个社交圈子里有\ ...

  6. 【BZOJ1491】[NOI2007]社交网络 Floyd

    [BZOJ1491][NOI2007]社交网络 Description 在社交网络(socialnetwork)的研究中,我们常常使用图论概念去解释一些社会现象.不妨看这样的一个问题. 在一个社交圈子 ...

  7. [BZOJ1491][NOI2007]社交网络 floyd

    1491: [NOI2007]社交网络 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 2196  Solved: 1170[Submit][Status ...

  8. 洛谷——P2047 [NOI2007]社交网络

    P2047 [NOI2007]社交网络 $Floyd$,一眼看到就是他(博主是不小心瞄到了这个题的标签吧qwq) 这个题目只要预处理出$S$到$T$的最短路的条数即可,类似$Spfa$的更新方法 如果 ...

  9. BZOJ1491:1491: [NOI2007]社交网络

    1491: [NOI2007]社交网络 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 2204  Solved: 1175[Submit][Status ...

随机推荐

  1. UE4 Pro Tips(keeps updating)

    Consolidate 功能 :在工程范围内用一种资源替换另外一种或多种资源具体操作:同时在编辑器中选中两个或多个资源,右键>Asset Actions>Replace Reference ...

  2. php WebSocket 简单实现demo

    WebSocket 是 HTML5 开始提供的一种在单个 TCP 连接上进行全双工通讯的协议. WebSocket 使得客户端和服务器之间的数据交换变得更加简单,允许服务端主动向客户端推送数据. 在 ...

  3. CentOS和Windows互相远程桌面方法

    https://blog.csdn.net/libaineu2004/article/details/49407883

  4. Linux内核调试方法总结之dumpsys

    dumpsys [用途]Android系统提供的dumpsys工具可以用来查看系统服务信息与状态. [使用说明] adb shell dumpsys <service> [<opti ...

  5. GMM demo

    # GMM model # // library(mvtnorm) ) n1 = n2 = mu1 = c(,) mu2 = c(-,-) sigma1 = matrix(c(,.,.,),nrow= ...

  6. 数据存储-cookie、sessionstorage、localstorage

    HTML5 Web Storage sessionStorage 和 localStorage 是 HTML5 Web Storage API 提供的,可以方便的在 web 请求之间保存数据.有了本地 ...

  7. python回调函数应用-获取jenkins构建结果

    需求背景: 现在用jenkins构建自动化测试(2个job),公司现将自动化纳入到发布系统 要求每次构建成功之后,把测试结果发送给发布系统.这就需要先获取jenkins构建的结果,如果构建结束,才能发 ...

  8. adb之mokey的用法

    monkey是安卓稳定性的测试方向 目录 1.使用格式 2.一般命令 3.分析monkey日志 1.使用格式 monkey的固定使用模式如下:[adb shell] monkey [options] ...

  9. <编译原理 - 函数绘图语言解释器(3)解释器 - python>

    <编译原理 - 函数绘图语言解释器(3)解释器 - python> <编译原理 - 函数绘图语言解释器(2)词法分析器 - python> <编译原理 - 函数绘图语言解 ...

  10. json-server-----》基本使用

    [WangQi]---json-server---基本使用   一.前后端并行开发的痛点 前端需要等待后端开发完接口以后 再根据接口来完成前端的业务逻辑 二.解决方法 在本地模拟后端接口用来测试前端效 ...